

Catalogue principal

Moteurs basse tension
Offre Process Performance
Moteurs Premium BT
Moteurs Process Performance BT

Notre savoir-faire et notre offre de moteurs, générateurs et services améliorent votre efficacité énergétique et vos performances industrielles sur le cycle de vie complet des produits, voire au-delà.

Moteurs basse tension Offre Process Performance

Hauteurs d'axe 63 à 450 - Puissances 0.12 à 1000 kW

Introduction

- Generalites
- Caractéristiques générales
Moteurs gamme fonte
- Moteurs Premium BT - IE3
- Conception mécanique
- Informations pour commander
- Caractéristiques techniques
- Moteurs Process Performance BT - IE2
- Conception mécanique
- Plaques signalétiques
- Informations pour commander
- Caractéristiques techniques
- Moteurs Process Performance BT et Premium BT53
- Codes options
- Schémas d'encombrement
- Accessoires
- Vue éclatée
- Tableau récapitulatif
Moteurs gamme aluminium
- Moteurs Process Performance BT - IE2
- Conception mécanique
- Plaques signalétiques
- Informations pour commander
- Caractéristiques techniques
- Codes options
- Schémas d'encombrement
- Accessoires
- Tableau récapitulatif
Informations utiles
- Panorama des tensions et fréquences réseau utilisées dans le monde
- Panorama de l'offre moteurs ABB
- Failoraina de Foirie motedis Aub

Généralités

Conformité normative

Les moteurs ABB sont des moteurs asynchrones à cage triphasés fermés et normalisés IEC et EN. Des moteurs conformes à d'autres normes nationales et internationales sont également disponibles sur demande.

Tous les sites de production sont certifiés ISO 9001 (assurance qualité) et ISO 14000 (gestion environnementale), et respectent les exigences des directives européennes applicables.

Normalisation IEC / EN

Electrique	Mécanique
IEC/EN 60034-1	IEC 60072
IEC/EN 60034-2-1	IEC/EN 60034-5
IEC/EN 60034-30	IEC/EN 60034-6
IEC 60034-8	IEC/EN 60034-7
IEC 60034-12	IEC/EN 60034-9
	IEC 60034-14

Normes internationales de rendement des moteurs

Un système international de classes de rendement énergétique existe aujourd'hui pour les moteurs asynchrones triphasés BT. Ce système contribue à l'harmonisation des réglementations en matière d'efficacité énergétique à travers le monde.

La norme de la Commission électrotechnique internationale (IEC) IEC/EN 60034-30:2008 définit des classes de rendement internationales IE (International Efficiency) pour les moteurs asynchrones triphasés monovitesse de 50 et 60 Hz. Cette norme s'inscrit dans les efforts d'harmonisation des procédures d'essais, des méthodes de mesure du rendement et de marquage des produits pour permettre aux acheteurs du monde entier de reconnaître aisément les moteurs à haut rendement. Les niveaux de rendement définis dans la norme IEC/EN 60034-30 sont basés sur les méthodes d'essais spécifiées dans la norme IEC/EN 60034-2-1:2007.

Pour favoriser la transparence du marché, la IEC 60034-30 stipule qu'à la fois la classe de rendement et la valeur de rendement doivent figurer sur la plaque signalétique et dans la documentation du produit. Cette dernière doit indiquer clairement la méthode de mesure du rendement utilisée : en effet, il existe différentes méthodes pouvant donner des résultats différents.

IEC/EN 60034-2-1: 2007

La norme IEC/EN 60034-2-1, entrée en vigueur en septembre 2007, fixe de nouvelles règles de mesure du rendement et des pertes moteurs.

Elle stipule deux méthodes de mesure du rendement : la méthode directe et la méthode indirecte. Cette norme spécifie les paramètres suivants pour déterminer le rendement par la méthode indirecte:

- température de référence
- trois possibilités pour déterminer les pertes supplémentaires dues à la charge (P,,): mesure, estimation et calcul selon une formule mathématique.

Les valeurs de rendement ainsi mesurées diffèrent de celles obtenues avec l'ancienne norme IEC 60034-2:1996. Il faut souligner que les valeurs de rendement de différents constructeurs ne sont comparables que si la même méthode a été utilisée.

Norme de mesure du rendement

IEC/EN 60034-2-1: 2007

Méthode directe Méthode indirecte:

- P, mesurées par des essais en charge
- P_{II} estimées entre 2,5 % et 1,0 % de la puissance absorbée à charge nominale entre 0,1 kW et 1000 kW
- Eh star : les pertes Pu sont calculées mathématiquement

Pertes fer (stator et rotor) déterminées à

[25°C + échauffement réel mesuré]

IEC/EN 60034-30: 2008

La norme IEC/EN 60034-30:2008 définit trois classes de rendement IE (pour les moteurs asynchrones triphasés monovitesse):

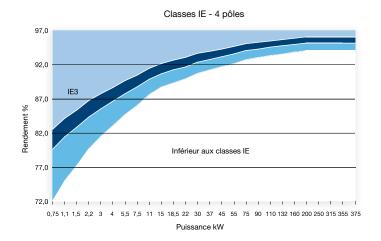
- IE1 = Classe Standard (ancienne classe européenne EFF2)
- IE2 = Classe Haut rendement (ancienne classe européenne EFF1 et identique à la classe EPAct aux Etats-Unis pour 60 Hz)
- IE3 = Classe Premium (identique à la classe "NEMA Premium" aux Etats-Unis pour 60 Hz)
- IE4 = Future classe Super Premium (rendement supérieur à celui de la classe IE3).

Les niveaux de rendement définis dans la IEC/EN 60034-30 sont basés sur les méthodes d'essais spécifiées dans la norme IEC/EN 60034-2-1:2007.

Le champ d'application de la nouvelle norme est plus large que la classification européenne précédente (CEMEP).

La IEC/EN 60034-30 couvre pratiquement tous les moteurs (ex., moteurs standards, moteurs Ex, moteurs pour applications Marine, moteurs freins).

- Moteurs triphasés mono-vitesse (50 Hz et 60 Hz)
- Moteurs 2, 4 et 6 pôles
- Puissance nominale de 0,75 à 375 kW
- Tension nominale U, jusqu'à 1000 V
- Service type S1 (continu) ou S3 (intermittent périodique) avec un facteur de service de 80 % ou plus
- Moteurs prêts à être raccordés directement au réseau.


Sont exclus de la norme IEC 60034-30 :

- Les moteurs conçus spécialement pour les applications à vitesse variable.
- Les moteurs complètement intégrés dans une machine (ex., pompe, ventilateur ou compresseur) qui peuvent être testés séparément de la machine.

Normes internationales de rendement des moteurs

Valeurs de rendement minimales définies par la norme IEC 60034-30:2008 (basées sur les méthodes de mesure de la norme IEC 60034-2-1:2007)

	Classe	IE1		Classe	IE2		Classe	IE3	
Puiss.	Standa	ard		Haut re	endeme	ent	Premiu	ım	
kw	2 pôles	4 pôles	6 pôles	2 pôles	4 pôles	6 pôles	2 pôles	4 pôles	6 pôles
0.75	72.1	72.1	70.0	77.4	79.6	75.9	80.7	82.5	78.9
1.1	75.0	75.0	72.9	79.6	81.4	78.1	82.7	84.1	81.0
1.5	77.2	77.2	75.2	81.3	82.8	79.8	84.2	85.3	82.5
2.2	79.7	79.7	77.7	83.2	84.3	81.8	85.9	86.7	84.3
3	81.5	81.5	79.7	84.6	85.5	83.3	87.1	87.7	85.6
4	83.1	83.1	81.4	85.8	86.6	84.6	88.1	88.6	86.8
5.5	84.7	84.7	83.1	87.0	87.7	86.0	89.2	89.6	88.0
7.5	86.0	86.0	84.7	88.1	88.7	87.2	90.1	90.4	89.1
11	87.6	87.6	86.4	89.4	89.8	88.7	91.2	91.4	90.3
15	88.7	88.7	87.7	90.3	90.6	89.7	91.9	92.1	91.2
18.5	89.3	89.3	88.6	90.9	91.2	90.4	92.4	92.6	91.7
22	89.9	89.9	89.2	91.3	91.6	90.9	92.7	93.0	92.2
30	90.7	90.7	90.2	92.0	92.3	91.7	93.3	93.6	92.9
37	91.2	91.2	90.8	92.5	92.7	92.2	93.7	93.9	93.3
45	91.7	91.7	91.4	92.9	93.1	92.7	94.0	94.2	93.7
55	92.1	92.1	91.9	93.2	93.5	93.1	94.3	94.6	94.1
75	92.7	92.7	92.6	93.8	94.0	93.7	94.7	95.0	94.6
90	93.0	93.0	92.9	94.1	94.2	94.0	95.0	95.2	94.9
110	93.3	93.3	93.3	94.3	94.5	94.3	95.2	95.4	95.1
132	93.5	93.5	93.5	94.6	94.7	94.6	95.4	95.6	95.4
160	93.7	93.8	93.8	94.8	94.9	94.8	95.6	95.8	95.6
200	94.0	94.0	94.0	95.0	95.1	95.0	95.8	96.0	95.8
250	94.0	94.0	94.0	95.0	95.1	95.0	95.8	96.0	95.8
315	94.0	94.0	94.0	95.0	95.1	95.0	95.8	96.0	95.8
355	94.0	94.0	94.0	95.0	95.1	95.0	95.8	96.0	95.8
375	94.0	94.0	94.0	95.0	95.1	95.0	95.8	96.0	95.8

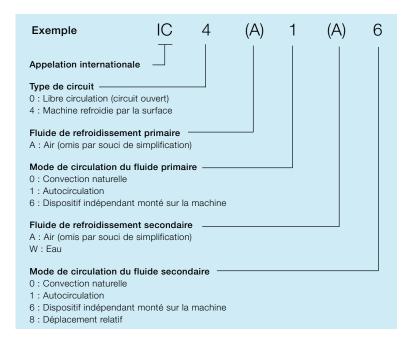
Comment ABB applique la nouvelle norme ?

ABB détermine les valeurs de rendement de ses moteurs selon la méthode indirecte de la norme IEC/EN 60034-2-1 en mesurant les pertes supplémentaires.

ABB propose une gamme complète de moteurs de classe de rendement IE2. Des moteurs de classe IE3 sont également disponibles.

Leader mondial, ABB propose l'offre de moteurs BT la plus complète du marché. Nous plaidons depuis longtemps en faveur d'une normalisation du rendement des moteurs et notre offre à haut rendement (EFF1 selon l'ancienne classification européenne) est au cœur de notre portefeuille de produits.

Caractéristiques générales


Formes de montage

	Code I/Code II	
Moteur à pattes	IM B3 IM V5 IM V6 IM B6 IM B7 IM B8 IM 1001 IM 1011 IM 1031 IM 1051 IM 1061 IM 1071	Code produit pos. 12 A = moteur à pattes, boîte à bornes sur le dessus R = moteur à pattes, boîte à
		bornes à droite L = moteur à pattes, boîte à bornes à gauche
Moteur à bride trous lisses	IM B5 IM V1 IM V3 *) *) *) *) IM 3001 IM 3011 IM 3031 IM 3051 IM 3061 IM 3071	B = Moteur à bride, trous lisses
Moteur à bride trous taraudés	IM B14 IM V18 IM V19 *) *) *) *) *) *) IM 3601 IM 3611 IM 3631 IM 3651 IM 3661 IM 3671	C = Moteur à bride, trous taraudés
Moteur à pattes et à bride trous lisses	M B35 IM V15 IM V36 *) *) *) IM 2001 IM 2011 IM 2031 IM 2051 IM 2061 IM 2071	H = Moteur à pattes/ à bride, boîte à bornes sur le dessus
		S = Moteur à pattes/ à bride, boîte à bornes à droite T = Moteur à pattes/
Moteur à pattes et à bride trous taraudés	IM B34 IM V17 IM 2101 IM 2111 IM 2131 IM 2151 IM 2161 IM 2171	à bride, boîte à bornes à gauche
Moteur à pattes, 2 bouts d'arbre	IM 1002 IM 1012 IM 1032 IM 1052 IM 1062 IM 1072	J = Moteur à pattes/ à bride, trous taraudés
*) Pas de normalisation IEC 60	0034-7.	

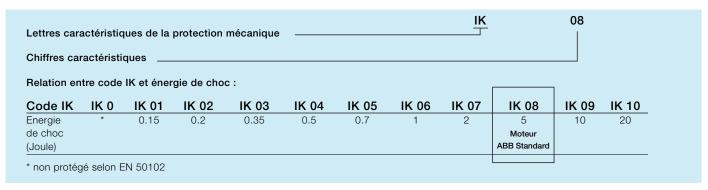
N.B.: Moteurs à arbre vertical vers le haut : si de l'eau ou un liquide est susceptible de pénétrer dans le moteur en s'écoulant le long de l'arbre, il incombe à l'utilisateur de rendre le moteur étanche. Consultez votre représentant ABB pour plus de renseignements.

Mode de refroidissement

La désignation du mode de refroidissement est spécifiée dans la norme IEC 60034-6.

Degrés de protection : code IP/code IK

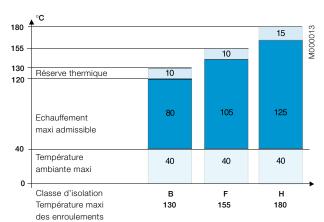
Les degrés de protection procurés par les enveloppes des machines tournantes sont spécifiés dans :


- la norme IEC 60034-5 ou EN 60529 pour le code IP
- la norme EN 50102 pour le code IK

Code de protection IP:

Protection des personnes contre les contacts accidentels avec les (ou à proximité des) organes sous tension et contre les contacts accidentels avec les pièces en mouvement à l'intérieur de l'enveloppe. De même, protection de la machine contre la pénétration de corps solides. Protection des machines contre les effets de la pénétration d'eau.

Code de protection IK: Classification des degrés de protection procurés par les enveloppes des moteurs contre les chocs mécaniques.



Isolation

Les moteurs ABB utilisent la classe d'isolation F avec l'échauffement de classe B, ce qui correspond aux exigences industrielles les plus fréquentes.

L'utilisation de la classe d'isolation F avec un échauffement de classe B confère aux moteurs ABB une réserve thermique. ce qui permet d'augmenter le niveau de charge jusqu'à 12 % sur des périodes limitées. On peut ainsi exploiter les moteurs à des températures ambiantes ou des altitudes supérieures, ou avec des tolérances supérieures de tension et de fréquence, ou encore prolonger la durée de vie de l'isolant.

Ainsi, une réduction de 10 K de la température du bobinage doublera la durée de vie de l'isolant.

Réserve thermique par classe d'isolation

La plupart des moteurs Premium ont une classe d'échauffement inférieure à la classe B.

Isolation classe F

- Température ambiante maxi 40 °C
- Échauffement maxi admissible 105 K
- Réserve thermique + 10 K

Echauffement classe B

- Température ambiante maxi 40 °C
- Échauffement maxi admissible 80 K
- Réserve thermique + 10 K

Echauffement classe E

- Température ambiante maxi 40 °C
- Échauffement maxi admissible 75 K
- Réserve thermique + 5 K

Température des différentes classes d'isolation

- Classe E 120 °C
- Classe B 130 °C
- Classe F 155 °C
- Classe H 180 °C

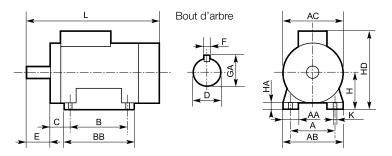
Traitement de surface

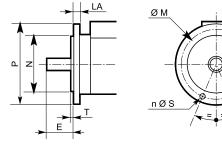
Les moteurs ABB de l'offre Process sont traités en standard avec un système de peinture correspondant à la catégorie de corrosivité C3M de la norme ISO/EN 12944:2 qui distingue 3 niveaux de durabilité : faible (L), moyen (M) et haut (H). La durabilité L correspond à 2-5 ans, la durabilité M à 5-15 ans et la durabilité H à plus de 15 ans. Le traitement de surface utilisé par ABB correspond à la durabilité moyenne M.

La durabilité ne constitue pas une durée de vie garantie. Il s'agit plutôt d'une information technique qui peut aider l'utilisateur à établir son programme de maintenance.

Celle-ci est souvent nécessaire à intervalles plus rapprochés

pour différentes raisons : décoloration, farinage en surface, usure et vieillissement, etc.


D'autres catégories de corrosivité (C4M et C5M) sont disponibles en option. De plus, un traitement de surface conforme Norsok (74) pour l'offshore est proposé en option. Consultez la section des Codes options pour la disponibilité.


La couleur ABB standard est le bleu Munsell 8B 4.5/3.25. D'autres couleurs sont disponibles (cf. Code option 54).

Classification des atmosphéres selon ISO 12944:2 basée sur la perte d'épaisseur.

Catégorie de	Atmosphères extérieures	Atmosphères intérieures	ABB
corrosivité			
C1 - très faible	-	Bâtiments chauffés à atmosphères saines (bureaux, magasins, écoles, hôtels, etc.)	
	Atmosphères à faible degré de pollution. En général, zones rurales	Bâtiments non chauffés où de la condensation peut apparaître (dépôts, salles de sport, etc.)	
C3 - moyenne	Atmosphères urbaines et industrielles, pollution modérée au dioxyde de soufre Zones côtières à faible salinité	Ateliers industriels fortement humides avec légère pollution de l'air (industrie agro-alimentaire, blanchisseries, brasseries, laiteries, etc.)	Traitement de surface standard
	Zones industrielles et zones côtières à salinité modérée	Usines chimiques, piscines, navires côtiers et chantiers navals	Traitement de surface en option (code option 115)
C5-I - très haute	Zones industrielles à atmosphères fortement humides et agressives	Bâtiments ou zones avec condensation quasi permanente et forte pollution	
C5-M - très haute	Zones côtières et offshore à forte salinité	Bâtiments ou zones avec condensation quasi permanente et forte pollution	Traitement de surface en option (code option 754)

Dimensions normalisées des bouts d'arbres et des brides pour moteurs à cage BT, IP 44, IP 54, IP 55

Moteur à pattes IM 1001, B3

Moteur à bride IM 3001, B5 / IM 3601, B14

Puissance	2 pôle	s - 3000 tr/	min		4 pôle	es - 1500 tı	/min		6 pô	es - 1000 tı	r/min	
50 Hz	Туре	Arbre	Trous lisses bride B5	Trous taraudés bride B14	Type	Arbre	Trous lisses bride B5	Trous taraudés bride B14	Туре	Arbre	Trous lisses bride B5	Trous taraudés bride B14
kW	Н	DxE	MxNxP	MxNxP	Н	DxE	MxNxP	MxNxP	Н	DxE	MxNxP	MxNxP
0.12	-	-	-	-	63	11 x 23	115 x 95 x 140	75 x 60 x 90	63	11 x 23	115 x 95 x 140	75 x 60 x 90
0.18	63	11 x 23	115 x 95 x 140	75 x 60 x 90	63	11 x 23	115 x 95 x 140	75 x 60 x 90	71	14 x 30	130 x 110 x 160	
0.25	63	11 x 23	115 x 95 x 140	75 x 60 x 90	71	14 x 30	130 x 110 x 160		71	14 x 30	130 x 110 x 160	85 x 70 x 105
0.37	71	14 x 30	130 x 110 x 160	85 x 70 x 105	71	14 x 30	130 x 110 x 160		80	19 x 40	165 x 130 x 200	100 x 80 x 120
0.55	71	14 x 30	130 x 110 x 160		80	19 x 40	165 x 130 x 200	100 x 80 x 120	80	19 x 40	165 x 130 x 200	
0.75	80	19 x 40	165 x 130 x 200		80	19 x 40	165 x 130 x 200		90	24 x 50	165 x 130 x 200	
1.1	80	19 x 40	165 x 130 x 200		90	24 x 50	165 x 130 x 200		90	24 x 50	165 x 130 x 200	
1.5	90	24 x 50	165 x 130 x 200		90	24 x 50	165 x 130 x 200		100	28 x 60	215 x 180 x 250	
2.2	90	24 x 50	165 x 130 x 200		100	28 x 60	215 x 180 x 250	130 x 110 x 160	112	28 x 60	215 x 180 x 250	
3	100	28 x 60	215 x 180 x 250	130 x 110 x 160	100	28 x 60	215 x 180 x 250	130 x 110 x 160	132	38 x 80	265 x 230 x 300	
4	112	28 x 60	215 x 180 x 250	130 x 110 x 160	112	28 x 60	215 x 180 x 250	130 x 110 x 160	132	38 x 80	265 x 230 x 300	
5.5	132	38 x 80	265 x 230 x 300	-	132	38 x 80	265 x 230 x 300	-	132	38 x 80	265 x 230 x 300	-
7.5	132	38 x 80	265 x 230 x 300	-		38 x 80	265 x 230 x 300	-	160	42 x 110	300 x 250 x 350	-
11	160		300 x 250 x 350	-			300 x 250 x 350	-	160		300 x 250 x 350	-
15	160	42 x 110	300 x 250 x 350	-	160	42 x 110	300 x 250 x 350	-	180	48 x 110	300 x 250 x 350	-
18.5	160	42 x 110	300 x 250 x 350	-	180	48 x 110	300 x 250 x 350	-	200	55 x 110	350 x 300 x 400	-
22	180		300 x 250 x 350	-	180	48 x 110	300 x 250 x 350		200	55 x 110	350 x 300 x 400	-
30	200	55 x 110	350 x 300 x 400	-	200		350 x 300 x 400	-	225	60 x 140	400 x 350 x 450	-
37	200		350 x 300 x 400	-	225	60 x 140	400 x 350 x 450	-	250	65 x 140	500 x 450 x 550	-
45	225		400 x 350 x 450	-	225		400 x 350 x 450	-	280		500 x 450 x 550	-
55	250		500 x 450 x 550	-	250		500 x 450 x 550		280		500 x 450 x 550	-
75	280		500 x 450 x 550	-	280		500 x 450 x 550	-	-	-	-	-
90	280	65 x 140	500 x 450 x 550	-	280	75 x 140	500 x 450 x 550	-	-	-	-	-

Références ABB normalement tenues en stock

Tableau 1 : Magnitudes maximales de vibration en déplacement, vitesse et accélération, par hauteur d'arbre

Classe d'équilibrage	Longueur d'arbre mm Montage	56 ≤ H ≤ 132			132 < H ≤ 280			H > 280		
		Déplacement µm	Vitesse mm/s	Accélération m/s ²	Déplacement µm	Vitesse mm/s	Accélération m/s ²	Déplacement µm	Vitesse mm/s	Accélération m/s²
Α	Suspension libre	25	1.6	2.5	35	2.2	3.5	45	2.8	4.4
	Montage rigide	21	1.3	2.0	29	1.8	2.8	37	2.3	3.6
В	Suspension libre	11	0.7	1.1	18	1.1	1.7	29	1.8	2.8
	Montage rigide	-	-	-	14	0.9	1.4	24	1.5	2.4

Services de fonctionnement

Moteurs en fonctionnement à 60 Hz

Les moteurs bobinés pour une certaine tension à 50 Hz peuvent fonctionner à 60 Hz sans modification, sous réserve des corrections ci-dessous de leurs caractéristiques :

Moteur bobiné	Relié à un	Données à 60	Hz en % des vale	eurs à 50 Hz (1)				
pour 50 Hz et	réseau 60 Hz et	Puissance %	Vitesse %	Courant In %	ld/In %	Cn %	Cd/Cn %	Cmax/Cn %
220 V	220 V	100	120	88	83	83	70	85
	255 V	115	120	100	100	96	95	98
380 V	380 V	100	120	98	83	83	70	85
	440 V	115	120	100	100	96	95	98
	460 V	120	120	100	105	100	100	103
400 V	380 V	100	120	100	80	83	66	80
	400 V	100	120	98	83	83	70	85
	440 V	110	120	100	95	91	85	93
	460 V	115	120	100	100	96	95	98
	480 V	120	120	100	105	100	100	100
415 V	460 V	110	120	98	95	91	85	94
	480 V	115	120	100	100	96	95	98
500 V	575 V	115	120	100	100	96	95	98
	600 V	120	120	100	105	100	100	103

⁽¹⁾ Id/In = Courant de démarrage/Courant nominal - Cn = Couple nominal - Cd/Cn = Couple au démarrage/Couple nominal - Cmax/Cn = Couple max/Couple nominal

Puissance en service temporaire ou intermittent

Pour un moteur et une charge donnés, l'échauffement atteint dans un fonctionnement en service temporaire ou intermittent, est en principe inférieur à celui relevé en service continu.

En d'autres termes, un moteur peut délivrer, en service temporaire ou intermittent, une puissance supérieure à celle en service continu. Le tableau ci-après donne, pour différents types de moteurs, la marge de puissance qu'il existe entre des fonctionnements à service temporaire S2 ou intermittent S3, et à service continu S1.

Les valeurs sont communiquées à titre indicatif, elles peuvent être différentes d'une construction à une autre.

Service temporaire	Nombre de pôles	Puissance permise e	Puissance permise en % de puissance nominale en service continu S1 pour des moteurs de taille :				
S2		63-100	112-250	280-355			
30 mn	2	105	120	120			
	4-8	110	120	120			
60 mn	2-8	100	110	110			

Service temporaire	Nombre de pôles	Puissance permise e	n % de puissance nominale en servi	ice continu S1 pour des moteurs de taille :
S3		63-100	112-250	280-355
15 %	2	115	145	140
	4	140	145	140
	6-8	140	140	140
25 %	2	110	130	130
	4	130	130	130
	6-8	135	125	130
40 %	2	110	110	120
	4	120	110	120
	6-8	125	108	120
60%	2	105	107	110
	4	110	107	110
	6-8	115	105	110

Couplages

Couplage des moteurs triphasés monovitesse Triangle (Δ) Etoile (Y) Couplage des moteurs triphasés bivitesse Deux enroulements séparés Y / Y Grande vitesse Petite vitesse Grande vitesse Petite vitesse Deux enroulements séparés Δ / Δ Petite vitesse Grande vitesse Petite vitesse Grande vitesse Couplage Dahlander Δ / Y Petite vitesse Grande vitesse Grande vitesse Petite vitesse Pour couple constant Couplage Dahlander Y / YY Petite vitesse Grande vitesse Petite vitesse Grande vitesse Pour couple quadratique

Commande en vitesse variable des moteurs Process Performance BT

Les moteurs asynchrones à cage offrent d'excellentes performances en termes de disponibilité, de fiabilité et de rendement. Leur commande par un variateur de fréquence permet encore d'accroître leurs performances. Au lieu de tourner en permanence à vitesse maximale, le moteur adapte sa vitesse aux besoins réels de l'application. Ce pilotage en vitesse variable permet également de contrôler finement un procédé et dans certains cas, d'améliorer les capacités de production en faisant tourner le moteur à des vitesses supérieures à la vitesse nominale.

Contrairement à un démarrage direct sur le réseau, le moteur piloté en vitesse variable démarre sans à-coups, réduisant considérablement les contraintes imposées au moteur et à la machine entraînée. De même, le réseau électrique est affranchi des fortes variations de courant de démarrage, un élément à prendre en compte lors de la conception du réseau.

Le tandem moteurs Process Performance BT/variateurs de fréquence (en particulier les variateurs ABB Industrial Drive) permet en général de réaliser d'importantes économies d'énergie et donc, d'optimiser l'efficacité énergétique du procédé avec à la clé, un meilleur bilan écologique et financier. Les moteurs Process Performance BT d'ABB sont conçus pour être alimentés à la fois par un variateur de fréquence et directement par le réseau. Une large gamme d'options est proposée pour les domaines d'application les plus exigeants.

Lors de la sélection de votre moteur Process Performance BT pour un entraînement à vitesse variable, les points suivants doivent être pris en compte.

1. Dimensionnement

La tension (ou le courant) fournie par le variateur de fréquence n'est pas parfaitement sinusoïdal, ce qui est susceptible d'augmenter les pertes, les vibrations et le bruit du moteur. De surcroît, toute variation de la répartition des pertes peut affecter l'équilibre thermique du moteur et provoquer une élévation de la température des bobinages. Dans tous les cas, le moteur doit être dimensionné conformément aux instructions fournies avec le variateur de fréquence sélectionné.

Pour les variateurs ABB, le moteur sera dimensionné avec notre logiciel DriveSize qui utilise des règles de dimensionnement basées sur des essais de type combinés complets.

En cas de dimensionnement manuel, vous noterez que les courbes de charge figurant dans ce catalogue et dans les manuels correspondants sont uniquement données à titre indicatif. Les valeurs exactes pour chaque moteur et variateur sont disponibles sur demande. En plus du dimensionnement thermique, une marge de couple adéquate doit être conservée à des fins de stabilité. Le couple maxi du moteur doit être supérieur d'au moins 30 % au couple de charge sur toute la plage de service.

La chute de tension dans les câbles d'alimentation doit aussi être prise en compte, surtout dans les câbles longs.

2. Plage de vitesse, vibrations et joints d'arbre

Les moteurs Process Performance d'ABB sont conçus pour fonctionner dans une large plage de vitesse et dans la plupart des cas, à des vitesses très supérieures à la vitesse nominale. La valeur de vitesse maxi figure sur la plaque signalétique ou peut être connue en utilisant le programme Drive-Size. Outre la plage de vitesse, vous ne devez pas dépasser la vitesse maxi admissible du moteur ou la vitesse critique de l'ensemble de l'équipement.

Si un niveau de vibrations particulièrement bas est requis, des moteurs à équilibrage de classe supérieure (code option 417) doivent être utilisés.

Dans les applications à grande vitesse, l'utilisation de joints labyrinthes (code option 783) à la place de joints V-ring doit être envisagée.

Des valeurs indicatives de vitesse maxi pour les moteurs Process Performance ABB sont données au tableau 1.

Tableau 1. Valeurs indicatives de vitesse maxi des moteurs Process Performance de la gamme fonte

Hauteur d'axe	Vitesse tr/min			
	2 pôles	4 pôles		
71-80	6000	4500		
90-100	6000	6000		
112-200	4500	4500		
225-250	3600	3600		
280	3600	2600		
315	3600	2300		
355 SM, ML	3600	2000		
355 LKA	3600	2000		
355 LKB	3000	2000		
400	3600	1800		
450	3000	1800		

3. Ventilation

Aux faibles vitesses, la capacité de refroidissement du ventilateur du moteur diminue, réduisant sa capacité de charge. Un ventilateur séparé tournant à vitesse constante (codes options 183, 189 et 422) peut être utilisé pour renforcer la capacité de refroidissement.

Aux vitesses élevées, l'utilisation de ventilateurs en métal (code option 068) en lieu et place de ventilateurs en plastique doit être envisagée. Si un faible niveau de bruit est requis, l'utilisation de ventilateurs unidirectionnels pour niveau de bruit réduit (codes options 044 et 045) est préconisée.

4. Lubrification

Dans les applications à vitesse variable, la température des roulements varie en fonction de la vitesse et de la charge du moteur. Dans ce cas, l'efficacité de la lubrification du moteur doit être vérifiée en mesurant la température des roulements en régime de fonctionnement normal. Si la température mesurée est supérieure à +80 °C, les intervalles de lubrification spécifiés sur la plaque de lubrification ou dans le manuel du moteur doivent être réduits ou des lubrifiants spéciaux hautes températures doivent être utilisés. Cf. manuel du moteur BT ABB.

En cas de régime continu à très faibles vitesses, de même qu'à très basses températures (inférieures à 20 °C), les graisses standards peuvent ne pas assurer une lubrification suffisante. Dans ce cas, des graisses spéciales avec additifs doivent être utilisées. Pour en savoir plus, contactez ABB.

Moteurs à roulements graissés à vie : lorsque la température de fonctionnement diffère de la température nominale, la durée de vie des roulements n'est plus la même. Pour en savoir plus, cf. sections spécifiques à chaque produit dans ce catalogue et dans les manuels correspondants.

L'utilisation de graisses dites "conductrices" pour éliminer les courants de palier est déconseillée du fait de leur mauvaise qualité lubrifiante et de leur faible conductivité.

5. Système d'isolation du moteur

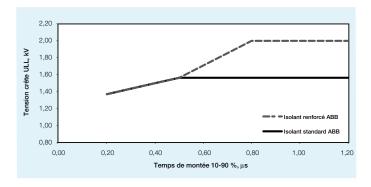
Pour un fonctionnement fiable des moteurs, les effets des tensions de sortie non sinusoïdales du variateur doivent être pris en compte lors du choix du système d'isolation du moteur et des filtres de sortie du variateur.

Si vous utilisez des variateurs ACS800 et ACS550 d'ABB avec une tension continue non contrôlée, vous devez sélectionner le système d'isolation et les filtres du tableau 2.

Tableau 2. Règles de sélection du système d'isolation du moteur et des filtres de sortie des variateurs ACS800 ou ACS550 d'ABB avec tension continue non contrôlée

Système d'isolation	
et filtres requis	
U _N ≤ 500 V	Système d'isolation standard ABB
	Système d'isolation standard ABB + filtres dU/dt
$U_N \le 600 \text{ V}$	OU
	Système d'isolation renforcé ABB (code option 405)
	Système d'isolation renforcé ABB (code option 405)
$U_N \le 690 \text{ V}$	ET
	filtres dU/dt sur la sortie du variateur
600 V < U _N ≤ 690 V	Système d'isolation renforcé ABB (code option 405)
longueur câble > 150 m	

Pour en savoir plus sur les filtres dU/dt, cf. catalogues des variateurs ABB correspondants.


Lorsque les règles de sélection du tableau 2 ne peuvent être appliquées et pour d'autres variateurs, la sélection se fait en fonction des tensions présentes sur les bornes du moteur.

Crêtes de tension phase-terre autorisées sur les bornes du moteur :

- Système d'isolation standard ABB : 1300 V crête
- Système d'isolation renforcé ABB (code option 405) : 1800 V crête

Les crêtes de tension phase-phase maxi admissibles sur les bornes du moteur en fonction du temps de montée des impulsions sont données à la figure 1. La courbe du haut, "Système d'isolation renforcé ABB", s'applique aux moteurs dotés d'un système d'isolation spécial pour l'alimentation par un variateur de fréquence (code option 405). Le "système d'isolation standard ABB" s'applique aux moteurs en exécution standard.

Figure 1 Crêtes de tension phase-phase admissibles sur les bornes du moteur en fonction du temps de montée des impulsions

6. Courants de palier

Les tensions et les courants de palier doivent être évités dans tous les moteurs afin de garantir la fiabilité de l'application complète. En cas d'utilisation des variateurs ACS800 ou ACS550 d'ABB, avec tension continue non contrôlée, des roulements isolés (code option 701) et/ou des filtres correctement dimensionnés côté variateur doivent être utilisés conformément au tableau 3. Pour d'autres montages et types de variateurs, contactez ABB. Lors de la commande, vous devez clairement spécifier votre configuration.

Pour en savoir plus sur les tensions et les courants de palier, cf. fiche "Bearing currents in AC drive systems" ou contactez ABB.

Tableau 3. Prévention des courants de palier dans les moteurs alimentés par les variateurs ACS800 et ACS550 avec tension continue non contrôlée

Puissance nominale (P _N)	Mesures de prévention
et/ou hauteur d'axe (IEC)	
$P_N < 100 \text{ kW}$	Aucune
P _N ≥ 100 kW	Roulement C.O.C. isolé
OU	
IEC 315 ≤ hauteur d'axe ≤	
IEC 355	
P _N ≥ 350 kW	Roulement C.O.C. isolé
OU	ET
IEC 400 ≤ hauteur d'axe ≤	filtre de mode commun côté variateur
IEC 450	

Filtres de mode commun

Les filtres de mode commun réduisent les courants de mode commun dans les entraînements à vitesse variable et diminuent les risques de courants de palier. Ils n'affectent pas de manière significative les tensions de phase et principales sur les bornes moteur. Pour en savoir plus, cf. manuels des variateurs ABB.

Roulements isolés

ABB utilise en standard des roulements à cages isolées. Des roulements hybrides (à billes céramiques non conductrices) peuvent également être utilisés dans les applications spéciales.

7. Câblage, mise à la terre et CEM

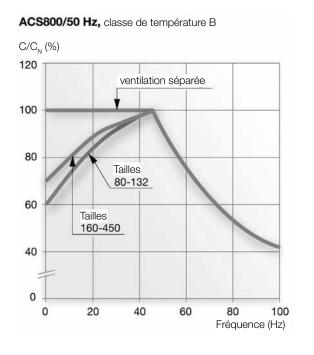
L'utilisation d'un variateur de fréquence impose des exigences spéciales en matière de câblage et de mise à la terre du système d'entraînement. Le moteur doit être raccordé par un câble symétrique et les presse-étoupes doivent assurer une reprise de masse sur 360° (également appelés presse-étoupes CEM, code option 704). Pour les moteurs jusqu'à 30 kW, des câbles asymétriques peuvent être utilisés, mais le blindage est toujours conseillé, surtout si la machine entraînée comporte des composants sensibles.

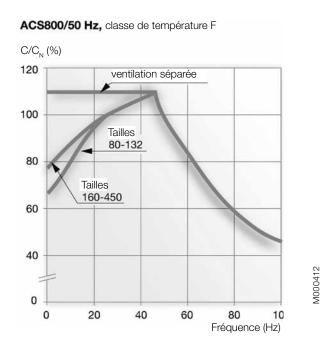
Pour les moteurs à partir de la hauteur d'axe normalisée 280, l'équipotentialité entre la carcasse du moteur et la machine est obligatoire, sauf si elles sont montées sur le même support acier. Lorsque le type de support assure l'équipotentialité, la conductivité HF de ce couplage doit être vérifiée. Vous trouverez des informations complémentaires sur la mise à la terre et le câblage des entraînements à vitesse variable dans le document "Grounding and cabling of the drive system" (référence : 3AFY 61201998 R0125 REV B).

Pour satisfaire aux exigences de CEM, des câbles CEM spéciaux doivent être utilisés en plus du montage correct des presseétoupes, avec des composants spéciaux supplémentaires de mise à la terre. Consultez les manuels du variateur de fréquence.

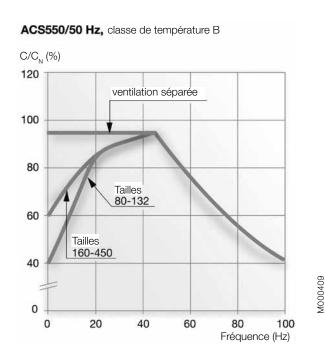
8. Capacité de charge des moteurs alimentés par les variateurs ACS800 et ACS550 d'ABB

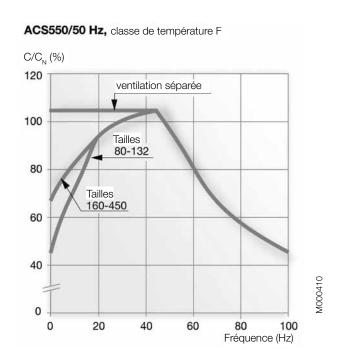
Les courbes de charge des figures 2 et 3 sont données à titre indicatif. Pour les valeurs exactes, contactez ABB. Ces courbes de charge peuvent également être utilisées pour le prédimensionnement d'autres variateurs de fréquence, mais il faut savoir que les algorithmes de teneur en harmoniques et de contrôle de ces derniers varient selon les variateurs de fréquence et que l'échauffement du moteur varie également.


Ces courbes présentent le couple en charge maxi continu d'un moteur en fonction de la fréquence (vitesse) pour obtenir le même échauffement qu'avec une tension sinusoïdale nominale à fréquence nominale et charge nominale maxi.


L'échauffement des moteurs Process Performance BT d'ABB est normalement de classe B. Ces moteurs peuvent être dimensionnés sur la base de la courbe de charge pour la classe d'échauffement B ; ils peuvent également être légèrement en surcharge et donc être dimensionnés sur la base de la courbe de charge pour la classe de rendement F.

Toutefois, si le catalogue ABB indique qu'un échauffement de classe F est utilisé sur une tension sinusoïdale, le moteur alimenté par un variateur de fréquence sera dimensionné sur la base de sa capacité de charge pour l'échauffement de classe B.


Si le moteur est utilisé sur la base de la courbe de charge pour l'échauffement de classe F, l'échauffement dans d'autres parties du moteur doit être vérifié, de même que les intervalles de lubrification et le type de graisse.


Courbe de charge d'un moteur alimenté par un ACS800 avec contrôle DTC

Courbe de charge d'un moteur alimenté par un ACS550 avec contrôle vectoriel

Pour plus d'informations, contactez-nous.

Boîte à bornes standard pour moteurs fonte Process Performance et Premium

En standard, la boîte à bornes est montée sur le dessus du moteur côté commande (C.C.). Elle peut également être positionnée à gauche ou à droite, cf. informations pour commander.

Les boîtes à bornes des hauteurs d'axe de 160 à 355 sont orientables dans les quatre directions (4x90°) et celles des hauteurs d'axe de 400-450 dans les deux directions (2x180°) pour permettre l'entrée des câbles des deux côtés du moteur. Pour les hauteurs d'axe 71-132, cette possibilité est proposée en option.

Degré de protection standard de la boîte à bornes : IP 55

Hauteurs d'axe 160 à 250 : les moteurs sont équipés d'une plaque d'entrée de câbles taraudée et amovible qui peut, également, être équipée de presse-étoupes. Cf. codes options.

Hauteurs d'axe 280 à 450 : les moteurs sont équipés d'une plaque d'entrée de câbles ; en standard, la boîte à bornes est dotée de presse-étoupes ou de boîtes de jonction. La plaque est en standard en silumin.

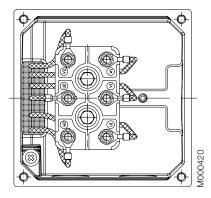
Si aucune information sur les câbles n'est précisée lors de la commande, ABB considère que les moteurs seront alimentés par câbles p.v.c non armé et la fourniture comportera des entrées de câbles et presses-étoupes selon le standard ABB tel que spécifié dans les tableaux suivants. Pour les câbles de raccordement du moteur, la commande doit spécifier leur type, leur quantité et la section des conducteurs. Des exécutions non standards des boîtes à bornes (autre taille, autre degré de protection, etc.) sont disponibles en option.

Les raccordements sont adaptés aux câbles Cu et Al (câbles Al sur demande pour les hauteurs d'axe 160 à 250). Les câbles se branchent sur les bornes au moyen de cosses de câble non fournies avec le moteur. Cf. Codes options

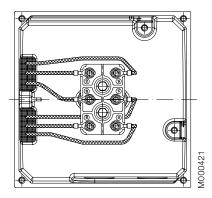
Exécutions standards


N.B.: moteurs 500 V et/ou à montage latéral, contactez ABB

Hauteur d'axe	Nbre de	Boîte à	Ouverture	Adaptateur	Trous	Presse-	Format boîte	Diamètre	Section	Taille
	pôles	bornes		45° (code	taraudés	étoupes	de jonction	ext. câble	conducteur	borne
				option)			(code option)	mm	mm²/ phase	6 x
71	2-8				2 x M16			Ø5-9	2.5	M4
80	2-8				2 x M25			Ø11-16	4	M4
90	2-8				2 x M32			Ø11-16	6	M5
100-132	2-8				2 x M32			Ø14-21	10	M5
160-180	2-8					2xM40	-	2xØ19-27	1x35	M6
200-250	2-8					2xM63	-	2xØ34-45	1x70	M10
280	2-8	210	С	-	2xM63	2xM63	-	2xØ32-49	2x150	M12
315 SM, ML	2-8	370	D	-	2xM63	2xM63	-	2xØ32-49	2x240	M12
315 LKA, LKB	2-4	370	D	-	2xM63	2xM63	-	2xØ32-49	2x240	M12
315 LKC	2-4	750	E	E-D (294)	-	-	Moyen (278)	2xØ48-60	4x240	M12
315 LKA, LKB, LKC	6-8	370	D	-	2xM63	2xM63	-	2xØ32-49	2x240	M12
355 SMA, SMB, SMC	2-4	750	E	E-D (294)	-	-	Moyen (278)	2xØ48-60	4x240	M12
355 SMC	6	750	E	E-D (294)	-	-	Moyen (278)	2xØ48-60	4x240	M12
355 SMC	8	370	D	-	2xM63	2xM63	-	2xØ32-49	2x240	M12
355 SMA, SMB	6-8	370	D	-	2xM63	2xM63	-	2xØ32-49	2x240	M12
355 ML, LK	2-4	750	E	E-D (294)	-	-	Grand (279)	2xØ60-80	4x240	M12
355 ML, LK	6-8	750	E	E-D (294)	-	-	Moyen (278)	2xØ48-60	4x240	M12
400 L, LK	2-6	750	E	E-D (294)	-	=	Grand (279)	2xØ60-80	4x240	M12
400 L, LK	8	750	E	E-D (294)	-	-	Moyen (278)	2xØ48-60	4x240	M12
450	2-4	1200	E	E-2D (295)	-	-	2 x grand (279)	4xØ60-80	6x240	M12
450 LA, LB, LC, LD	6-8	750	Е	E-D (294)	-	-	Grand (279)	2xØ60-80	4x240	M12
Entrées de câbles au	xiliaires									
160 - 180	2-8				1xM16			Ø5-9		
200 - 250	2-8				1xM16			Ø5-9		
280 - 450	2-8				2xM20			Ø8-14		


Borne de masse sur le moteur

	Sur carcasse	Dans boîte à bornes principale
71-112	M4	M4
132	M5	M5
160 - 180	étrier	M6
200 - 250	étrier	M6
280 - 315	M10	2xM10
355 - 400	M10	2xM10
450	M10	4xM12


Exemples de boîtes à bornes et de raccordements pour moteurs fonte Process Performance et Premium.

Plaque à bornes, hauteurs d'axe 071-080

Plaque à bornes, hauteurs d'axe 090-112

Plaque à bornes, hauteur d'axe 132

Fig 1. Boîte à bornes hauteurs d'axe 160-250, plaque d'entrées de câbles filetées

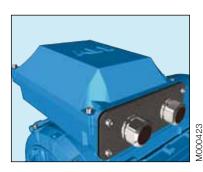


Fig 2. Boîte à bornes hauteus d'axe 280-315, plaque d'entrées de câbles et presse-étoupes

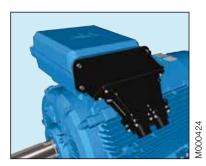


Fig 3. Boîte à bornes hauteurs d'axe 355-400, avec adaptateur et boîte de jonction

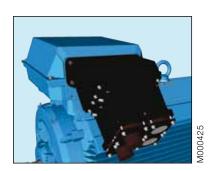


Fig 4. Boîte à bornes hauteur d'axe 450, avec adaptateur et boîte de jonction

Fig 5. Plaque à bornes hauteus d'axe 160-250, plaque d'entrées de câbles filetées

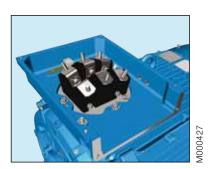


Fig 6. Plaque à bornes, hauteurs d'axe 280-315

Fig 7. Plaque à bornes, hauteurs d'axe 355-400

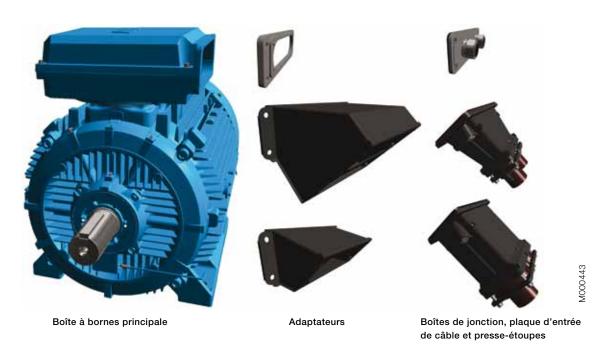


Fig 8. Plaque à bornes, hauteur d'axe 450

Variantes pour les boîtes à bornes pour moteurs fonte Process Performance et Premium

Adaptateurs en option

Nous proposons un large choix d'accessoires pour le raccordement d'un ou de plusieurs câbles. Les plus courants sont décrits ci-dessous. Pour le choix complet, contactez ABB.

Comment commander?

- Vérifiez en premier que la boîte à bornes permet le montage du câble et des conducteurs (cf. correspondance type de moteur/type de boîte à bornes page 18).
- Si des câbles de très grande section sont utilisés, vous devrez peut-être utiliser une boîte à bornes de taille supérieure au format standard. Sélectionnez le(s) presseétoupes ou la (les) boîte(s) de jonction selon le diamètre externe du (des) câble(s).
- Sélectionnez l'adaptateur, la plaque d'entrée de câbles et le(s) presse-étoupes ou la boîte de jonction appropriés.
- N.B.: la rotation de la boîte à bornes dans une position non standard peut restreindre l'utilisation de certains adaptateurs.

Exemple de commande

Moteur

Câbles 2 câbles, diamètre externe 58 section conducteur 185 mm² collier d'amarrage obligatoire						
	entrée des câbles par le bas					
Une boîte à bornes en fonte requise pour les résistances de réchauffage et une autre pour les sondes thermiques.						
Moteur	M3BP 315 MLA 4-pole, B3					
Adaptateur	D-D - code option 293					
Boîte de jonction	Code option 278					
Collier d'amarrage	Code option 231					
Auxiliaires	Codes options 380, 567, 568					

200 kW, 4 pôles, 400 V 50 Hz

Boîte à bornes principale et section maximale d'un conducteur

Seule une boîte à bornes de taille immédiatement supérieure peut être sélectionnée. Vérifiez également le diamètre de l'entrée de câbles : tous les câbles doivent pouvoir passer.

Boîte à bornes	Ouverture	Section maxi d'un	Une boîte à bornes de taille i	Une boîte à bornes de taille immédiatement supérieure peut être sélectionnée si			
standard		conducteur de phase mm²	une plus grande section est requise				
			Code option 019, boîte à	Taille ouverture avec	Section maxi d'un		
			bornes de taille supérieur au	code option 019	conducteur de phase		
			format standard		mm²		
210	С	2 x 240	370	D	2 x 300		
370	D	2 x 300	750	Е	4 x 500		
750	E	4 x 500	1200	E	4 x 500		
1200	E	4 x 500	NA	NA	NA		

Adaptateurs en option

Pour faciliter le raccordement des câbles pénétrant dans la boîte à bornes par le dessus ou le dessous, il est recommandé d'utiliser un adaptateur. Les adaptateurs permettent également de monter plusieurs boîtes de jonction ou plaques presse-étoupes.

Adaptateur		Code option	Ouverture vers boîte à bornes	Plaque d'entrée de câbles ou ouverture pour boîte de jonction	Matière	Remarques
	M000430	292	С	С	Acier	
	M000431	293	D	D	Acier	
	M000432	294	Е	D	Acier	Fourni en standard avec la boîte à bornes de type 750
	M000433	295	Е	2 x D	Acier	Fourni en standard avec la boîte à bornes de type 1200
	M000434	296	Е	3 x D	Acier	Possible uniquement sur boîte à bornes 1200
	M000435	444	Е	2 x E	Acier	Possible uniquement sur boîte à bornes 1200

Plaque d'entrée de câbles, taille maximale des presseétoupes et matière

Les plaques d'entrées de câbles sont fournies vierges ou percées et filetées pour des presse-étoupes adaptés au diamètre des câbles et au nombre de presse-étoupes requis. En standard, elles sont en silumin ; en option, elles peuvent être en acier inoxydable ou acier peint.

Taille	Exemples of	Exemples de taille et de nombre maxi de					
	presse-éto	presse-étoupes (pas métrique)					
С	2xM90	3xM50	7xM32				
D	4xM90	4xM63	7xM50				
E	6xM90	7xM63	9xM50				

Codes options

- 729 Plaque d'entrée de câble en aluminium pour presseétoupes ; non percée
- 730 Exécution pour presse-étoupes au pas NPT
- **743** Plaque d'entrée de câble en acier pour presse-étoupes, non percée
- **744** Plaque d'entrée de câble en acier inoxydable pour presse-étoupes, non percée
- **745** Plaque d'entrée de câble en acier peint avec presseétoupes en laiton nickelé
- **746** Plaque d'entrée de câble en acier inoxydable avec presse-étoupes en laiton nickelé standard

Presse-étoupes et boîtes de jonction

Presse-étoupes

Le tableau suivant reprend les types de presse-étoupes et les diamètres externes des câbles pour chaque taille.

Type de presse-étoupes	Diamètre externe, mm						
	Code option 745		Code option 231		Code option 704		
	Plaque d'entrée de	e câbles en acier peint	Presse-étoupes st	andard avec collier	Presse-étoupes C	EM	
	avec presse-étoup	es en laiton	d'amarrage	d'amarrage			
	Hauteurs d'axe	Hauteurs d'axe	Hauteurs d'axe	Hauteurs d'axe	Hauteurs d'axe	Hauteurs d'axe	
	160-250	280-450	160-250	280-450	160-250	280-450	
M20	8-14	8-14	8-14	8-14	8-14	8-14	
M25	10-16	10-16	10-16	10-16	10-16	10-16	
M32	14-21	14-21	14-21	14-21	14-21	14-21	
M40	18-27	18-27	18-27	18-27	18-27	18-27	
M50	26-35	26-35	26-35	26-35	26-35	26-35	
M63	32-49	32-49	32-49	32-49	32-49	32-49	
M75	NA	46-60	NA	NA	NA	NA	
M90	NA	55-70	NA	NA	NA	NA	

Pour les presse-étoupes armés et au pas NPT, contactez ABB.

Boîte de jonction

Les boîtes de jonction constituent une alternative aux plaques d'entrées de câbles et aux presse-étoupes. Elles autorisent un plus grand espacement entre les conducteurs, facilitant leur raccordement.

L'étanchéité des entrées des boîtes de jonction est assurée par des joints en caoutchouc pour un ou deux câbles principaux. Elles comportent, en plus, deux trous obturés M20 pour les câbles auxiliaires.

		Code option	Ouverture vers boîte à bornes	Diamètre externe des câbles mm	Entrées pour câble auxiliaire	Accessoires Code option 704 ; Presse-étoupe CEM	Code option 231 ; Presse-étoupe standard avec collier d'amarrage
	M000436	277	С	Qté : 1 ou 2 48-60 mm *	2 trous obturés M20	Option	Option
	M000437	278	D	Qté : 1 ou 2 48-60 mm *	2 trous obturés M20	Option	Option
	M000438	279	D	Qté : 1 ou 2 60-80 mm *	2 trous obturés M20	Option	Option

^{*} Le joint d'étanchéité à l'intérieur de la boîte de jonction peut être utilisé pour des câbles de 40-52 mm de diamètre.

Boîte à bornes séparée

A partir de la hauteur d'axe 160, les moteurs peuvent être équipés d'une boîte à bornes séparée pour raccorder des auxiliaires (par exemple, des résistances de réchauffage ou des sondes thermiques). La boîte à bornes séparée standard est équipée de presse-étoupes M20 pour l'entrée des câbles de raccordement et peut être en fonte ou en aluminium.

Les bornes sont à ressort pour un raccordement rapide et aisé. Elles sont prévues pour des conducteurs jusqu'à 2,5 mm². Les boîtes à bornes séparées sont équipées d'une borne de masse. En standard, la première boîte à bornes séparée est montée à droite C.C.

Codes options

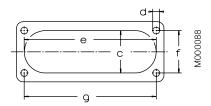
- 380 Boîte à bornes séparée pour sondes thermiques, matière standard
- 418 Boîte à bornes séparée pour tout type d'auxiliaire (ex., sondes thermiques + résistances de réchauffage), matière standard
- 567 Boîte à bornes séparée en fonte
- 568 Boîte à bornes séparée pour résistances de réchauffage, matière standard
- 569 Boîte à bornes séparée pour frein

Boîte à bornes séparée en aluminium, petit format (80 x 125 mm, 12 barrettes maxi) Borne de masse M4

Boîte à bornes séparée en aluminium, grand format (80 x 250 mm, 30 barrettes maxi) Borne de masse M4

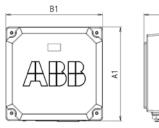
Boîte à bornes séparée en fonte (211 x 188 mm, 30 barrettes maxi) Borne de masse M6

Entrée de câble standard de taille M20. Le nombre d'entrées dépend du type de boîte à bornes et du nombre d'auxiliaires sélectionnés.


Schémas d'encombrement Moteurs Process Performance BT, gamme fonte

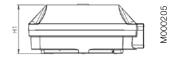
Boîtes à bornes, exécution standard avec 6 bornes

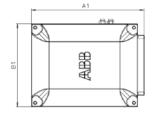
Hauteurs d'axe 71 à 132 : la boîte à bornes est intégrée à la carcasse et ses dimensions sont incluses aux schémas d'encombrement du moteur.

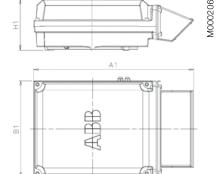

Dimensions des plaques d'entrée de câbles des boîtes à bornes

Hauteurs d'axe 160 et plus

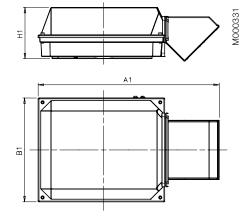
Plaque d'entrée de	С	е	f	g	d	
câbles						
С	62	193	62	193	M8	
D	100	300	80	292	M10	
E	115	370	100	360	M12	


Hauteurs d'axe 160 - 250




Hauteur d'axe	A1	B1	H1
160 à 180	257	257	106
200 à 250	300	311	150

Hauteurs d'axe 280-315 Boîtes à bornes sur le dessus et sur le côté 210, 370



Hauteurs d'axe 355-450 Boîte à bornes sur le dessus 750 + adaptateur

Hauteur d'axe 450 Boîte à bornes sur le dessus 1200

Hauteurs d'axe 280 - 400 Types de boîte à bornes	A1	B1	H1	
210	416	306	177	
370	451	347	200	
750 sur le dessus	686	413	219	
750 sur le côté	525	413	219	
1200	1250	578	285	
	1195	578	285	
	1000	578	285	

Moteurs Premium BT - IE3 Gamme fonte

Moteurs asynchrones triphasés fermés BT Hauteurs d'axe 160 à 355 Puissances 11 à 355 kW

www.abb.com/motors&generators

Conception mécanique

La conception mécanique, les schémas d'encombrement et les autres caractéristiques des moteurs Premium Process BT sont identiques à ceux des moteurs Process à l'exception des éléments suivants :

- Roulements
- Charges admissibles sur l'arbre

Roulements

Les moteurs sont équipés en standard de roulements à une seule rangée de billes (cf. tableaux ci-dessous). Les moteurs ABB disposent, en option, de roulements à rouleaux (NU- ou NJ-) C.C. particulièrement adaptés à des entraînements poulie-courroie et permettant de supporter des charges radiales importantes. En cas de charges axiales importantes, des roulements à billes à contact oblique doivent être utilisés (option). Lors de la commande d'un moteur à roulements à billes à contact oblique, la forme de montage ainsi que le sens d'application et la valeur de la charge axiale doivent être précisés. Pour des roulements spéciaux, cf. codes options.

Série normalisée avec roulements à billes

Hauteur	Nombre	Roulements à billes	
d'axe	de pôles	C.C.	C.O.C.
160	2-12	6309/C3	6209/C3
180	2-12	6310/C3	6209/C3
200	2-12	6312/C3	6210/C3
225	2-12	6313/C3	6212/C3
250	2-12	6315/C3	6213/C3
280	2	6316/C3	6316/C3
	4-12	6316/C3	6316/C3
315	2	6316/C3	6316/C3
	4-12	6319/C3	6316/C3
355	2	6316M/C3	6316M/C3
	4-12	6322/C3	6316/C3

¹⁾ Sur demande

Série avec roulements à rouleaux, code option 037

Hauteur	Nombre	Roulements à rouleaux, code option 037
d'axe	de pôles	C.C.
160	2-12	NU 309
180	2-12	NU 310
200	2-12	NU 312
225	2-12	NU 313
250	2-12	NU 315
280	2	1)
	4-12	NU 316/C3
315	2	1)
	4-12	NU 319/C3
355	2	1)
	4-12	NU 322/C3

Point fixe

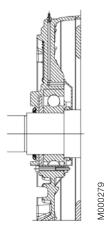
La bague extérieure du roulement côté commande peut être bloquée axialement avec un couvercle sur le roulement intérieur. La bague intérieure est bloquée grâce à une faible tolérance sur l'arbre.

Tous les moteurs sont équipés en standard d'un point fixe côté commande (C.C.).

Dispositif de blocage rotor (pour le transport)

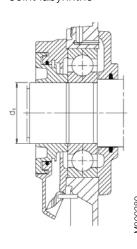
Le rotor des moteurs équipés de roulements à rouleaux ou à billes à contact oblique est immobilisé par un dispositif spécial qui protège les roulements des vibrations pendant le transport. Une étiquette spéciale signale à l'utilisateur si les moteurs de hauteurs d'axe 280 à 355 sont dotés d'un tel dispositif.

Le dispositif peut également être monté lors de toute opération de déplacement ou de manutention susceptible d'endommager les roulements.

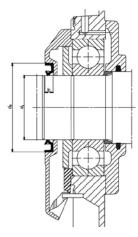

Joints d'étanchéité

La taille et le type des joints d'étanchéité pour les hauteurs d'axe 160 à 450 sont spécifiés dans les tableaux ci-dessous.

		Série normalisée		Autre série	
Hauteur	Nombre	Joint axial		Joint radial (DIN 3760)	
d'axe	de pôles	C.C.	C.O.C.	Code Option 072	
160	2-12	RB45	V-45A	45x62x8	
180	2-12	RB50	RB45	50x68x8	
200	2-12	RB60	V-50A	60x80x8	Joint axial:
225	2-12	RB65	V-60A	65x85x10	RB4575 = Joint Gamma
250	2-12	RB75	V-65A	75x95x10	V5095 = Joint V-ring


Hauteur	Nombre	Série normalisée		Autre série	
d'axe	de pôles	C.C.	C.O.C.	C.C.	C.O.C.
280	2	Joint labyrinthe	Joint labyrinthe	-	Joint labyrinthe
280	4-12	Joint labyrinthe	Joint labyrinthe	Joint labyrinthe	Joint labyrinthe
				Joint radial 80x110x10	Joint radial 80x110x10
315	2	Joint labyrinthe	Joint labyrinthe	-	Joint labyrinthe
315SM, ML	4-12	Joint labyrinthe	Joint labyrinthe	Joint labyrinthe	Joint labyrinthe
				Joint radial 95x125x10	Joint radial 80x110x10
315LK	4-12	Joint labyrinthe	Joint labyrinthe	-	Joint labyrinthe
					Joint radial 80x110x10
355	2	Joint labyrinthe	Joint labyrinthe		Joint labyrinthe
355	4-12	Joint labyrinthe	Joint labyrinthe	-	Joint labyrinthe

Hauteurs d'axe 160-250



Hauteurs d'axe 280-355

Joint labyrinthe

Joint radial

Durée de vie des roulements

La durée de vie normale d'un roulement (L10h) telle que définie et préconisée par l'ISO 281 correspond au nombre d'heures de fonctionnement atteint ou dépassé par 90 % des roulements identiques testés dans des conditions spécifiques. 50 % des roulements atteignent au moins cinq fois cette durée de vie.

La durée de vie calculée L_{10h} pour la transmission d'énergie au moyen d'un accouplement (machine à arbre horizontal) est :

Hauteurs d'axe 280 à 355 ≥ 200 000 heures

Lubrification

A la livraison, les moteurs sont lubrifiés avec une graisse de qualité. Le type de graisse préconisé est spécifié dans le manuel du moteur fourni ou, dans le cas des hauteurs d'axe de 160 à 450, sur la plaque de lubrification fixée sur la carcasse du moteur. Cf. exemple de plaque de lubrification page 44.

Moteurs à roulements graissés à vie

Les moteurs de hauteurs d'axe 160 à 250 peuvent être dotés de roulements graissés à vie. Ces roulements sont lubrifiés avec une graisse de qualité et haute température. Les types de roulement figurent sur les plaques signalétiques.

Les valeurs de durée de vie suivantes des roulements sont données à titre indicatif ; elles varient selon l'application et les conditions de charge :

- Moteurs 4-8 pôles, environ 40 000 h
- Moteurs 2 pôles, environ 20 000 h

Intervalles de lubrification

Pour les intervalles de lubrification, ABB applique le principe de durée de vie L, (fiabilité des roulements assurée sur 99 % des moteurs au cours de l'intervalle).

Les intervalles de lubrification peuvent également être calculés selon le principe L₁₀ qui sont le double des valeurs L₁. Les valeurs sont disponibles auprès d'ABB sur demande.

Méthode de lubrification des moteurs fonte

M4BP 160-355 Roulements graissés à vie en standard M4BP 160-250 Roulements graissés à vie en option

Moteurs équipés de graisseurs

Pour les hauteurs d'axe 280 à 355, les organes de roulement sont conçus pour pouvoir utiliser une tête de soupape qui simplifie la lubrification, celle-ci se faisant avec le moteur en marche.

Les graisseurs sont dotés de soupapes d'évacuation de la graisse qui doivent être ouvertes avant le graissage et refermées 1 à 2 heures après pour garantir une parfaite étanchéité des roulements à la poussière et autres impuretés.

Un collecteur de graisse peut éventuellement être utilisé (cf. code option 433).

Les tableaux suivants donnent les intervalles de lubrification selon le principe L, pour différentes vitesses à une température ambiante de 25 °C. Ces valeurs s'appliquent aux moteurs à arbre horizontal (B3) avec une température des roulements d'environ 80 °C et en utilisant une graisse de qualité supérieure à base de savon complexe au lithium et aux minéraux ou d'huile PAO.

Pour en savoir plus, cf. manuel des moteurs BT ABB.

Intervalles de lubrification selon le principe L₁

Hauteur	Quantité de	kW	3600	3000	kW	1800	1500	kW	1000	kW	500-900
d'axe	graisse		tr/min	tr/min		tr/min	tr/min		tr/min		tr/min
	g/roulement										
Rouleme	nts à billes										
Intervalle	s de lubrificati	on hrs/fon	ctionnement	t							
160	25	≤ 18,5	9000	12000	≤ 15	18000	21500	≤ 11	24000	toutes	24000
160	25	> 18,5	7500	10000	> 15	15000	18000	> 11	22500	toutes	24000
180	30	≤ 22	7000	9000	≤ 22	15500	18500	≤ 15	24000	toutes	24000
180	30	> 22	6000	8500	> 22	14000	17000	> 15	21000	toutes	24000
200	40	≤ 37	5500	8000	≤ 30	14500	17500	≤ 22	23000	toutes	24000
200	40	> 37	3000	5500	> 30	10000	12000	> 22	16000	toutes	20000
225	50	≤ 45	4000	6500	≤ 45	13000	16500	≤ 30	22000	toutes	24000
225	50	> 45	1500	2500	> 45	5000	6000	> 30	8000	toutes	10000
250	60	≤ 55	2500	4000	≤ 55	9000	11500	≤ 37	15000	toutes	18000
250	60	> 55	1000	1500	> 55	3500	4500	> 37	6000	toutes	7000
280	60	toutes	2000	3500	-	-	-	-	-	-	-
280	60	-	-	-	toutes	8000	10500	toutes	14000	toutes	17000
280	35	toutes	1900	3200		-	-		-		-
280	40		-	-	toutes	7800	9600	toutes	13900	toutes	15000
315	35	toutes	1900	3200		-	-		-		-
315	55		-	-	toutes	5900	7600	toutes	11800	toutes	12900
355	35	toutes	1900	3200		-	-		-		-
355	70		-	-	toutes	4000	5600	toutes	9600	toutes	10700

Pour les moteurs M4BP 160 à 250, l'intervalle peut être augmenté de 30 % pendant maximum 3 années calendaires. Les valeurs du tableau ci-dessus sont également valables pour les hauteurs d'axe M4BP 280 à 355.

Hauteur	Quantité	kW	3600	3000	kW	1800	1500	kW	1000	kW	500-900
d'axe	de graisse		tr/min	tr/min		tr/min	tr/min		tr/min		tr/min
	g/roulemen	t									
Roulemer	nts à rouleaux	X									
Intervalle	s de lubrifica	tion hrs/for	nctionnemer	nt							
160	25	≤ 18,5	4500	6000	≤ 15	9000	10500	≤ 11	12000	toutes	12000
160	25	> 18,5	3500	5000	> 15	7500	9000	> 11	11000	toutes	12000
180	30	≤ 22	3500	4500	≤ 22	7500	9000	≤ 15	12000	toutes	12000
180	30	> 22	3000	4000	> 22	7000	8500	> 15	10500	toutes	12000
200	40	≤ 37	2750	4000	≤ 30	7000	8500	≤ 22	11500	toutes	12000
200	40	> 37	1500	2500	> 30	5000	6000	> 22	8000	toutes	10000
225	50	≤ 45	2000	3000	≤ 45	6500	8000	≤ 30	11000	toutes	12000
225	50	> 45	750	1250	> 45	2500	3000	> 30	4000	toutes	5000
250	60	≤ 55	1000	2000	≤ 55	4500	5500	≤ 37	7500	toutes	9000
250	60	> 55	500	750	> 55	1500	2000	> 37	3000	toutes	3500
280	60	toutes	1000	1750	-	-	-	-	-	-	-
280	70	-	-	-	toutes	4000	5250	toutes	7000	toutes	8500
280	35	toutes	900	1600		-	-		-		-
280	40		-	-	toutes	4000	5300	toutes	7000	toutes	8500
315	35	toutes	900	1600		-	-		-		-
315	55		-	-	toutes	2900	3800	toutes	5900	toutes	6500
355	35	toutes	900	1600		-	-		-		-
355	70		-	-	toutes	2000	2800	toutes	4800	toutes	5400

Pour les moteurs M4BP 160 à 250, l'intervalle peut être augmenté de 30 % pendant maximum 3 années calendaires. Les valeurs du tableau ci-dessus sont également valables pour les hauteurs d'axe M4BP 280 à 355.

Diamètre de la poulie

Une fois la durée de vie des roulements déterminée, le diamètre mini admissible de la poulie peut être calculé en utilisant F_R comme suit :

$$D = \frac{1.9 \cdot 10^7 \cdot K \cdot P}{n \cdot F_R}$$

avec:

 $F_{R} =$

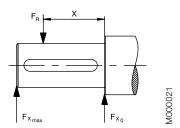
D =diamètre de la poulie, mm P= puissance requise, kW vitesse moteur, tr/min n =

K= facteur de tension de la courroie, varie selon le type de courroie et le service type. Valeur courante pour les

> courroies trapézoïdales : 2,5 effort radial admissible

Charges admissibles sur l'arbre

Les tableaux spécifient la charge radiale admissible en Newton, en supposant une charge axiale nulle et une température ambiante de 25 °C. Les valeurs sont basées sur des conditions normales de fonctionnement à 50 Hz et des durées de vie calculées de 20 000 et 40 000 heures pour les hauteurs d'axe 160 à 355.


Les moteurs sont des machines à pattes IM B3 avec les charges dirigées latéralement. Dans certains cas, la résistance de l'arbre affecte les niveaux de charge admissibles. A 60 Hz, les valeurs doivent être réduites de 10 %. Pour les moteurs bi-vitesse, les valeurs doivent être basées sur la vitesse la plus élevée.

Les charges admissibles en cas d'efforts radiaux et axiaux simultanés sont disponibles sur demande.

Si la charge radiale est appliquée entre les points X_0 et X_{\max} , l'effort admissible $F_{\rm R}$ peut être calculé avec la formule suivante:

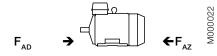
$$F_{R} = F_{X0} - \frac{X}{E} (F_{X0} - F_{Xmax})$$

E = longueur du bout d'arbre de la série normalisée

Charges radiales admissibles

Hauteurs d'axe 160 à 355

		Longueur du bout	Roulemer	nts à billes			Roulemer	nts à rouleaux		
Hauteur		d'arbre	20 000 he	ures	40 000 he	ures	20 000 he	ures	40 000 he	ures
d'axe	Pôles	E (mm)	F _{x0} (N)	F _{Xmaxi} (N)	F _{xo} (N)	F _{Xmaxi} (N)	F _{xo} (N)	F _{Xmaxi} (N)	F _{xo} (N)	F _{Xmaxi} (N)
160 MLA	2	110	3540	2740	2955	2285	7100	4300	6140	4300
	4	110	4000	3100	3325	2570	8000	4300	6870	4300
	6	110	4170	3200	3440	2655	8600	4300	7270	4300
	8	110	4600	3585	3855	2985	9300	4300	7955	4300
160 MLB	2	110	3540	2740	2955	2270	7085	4300	6070	4300
	4	110	4085	3300	3370	2725	8300	4300	7055	4300
	6	110	4100	3355	3400	2755	8600	4300	7300	4300
	8	110	4200	3270	3455	2670	9000	4300	7570	4300
160 MLC	2	110	3400	2600	2855	2200	6800	4300	5885	4300
	4	110	3700	3000	3070	2485	7800	4300	6640	4300
	6	110	3600	2900	2870	2325	8000	4300	6700	4300
	8	110	4170	3370	3370	2725	9000	4300	7585	4300
	4	110	3400	2755	2755	2240	7600	4300	6370	4300
160 MLE	2	110	3185	2570	2640	2140	6785	4300	5770	4300
180 MLA	2	110	4100	3385	3455	2825	8125	5500	7025	5500
	4	110	4270	3485	3525	2885	8600	5500	7300	5500
	6	110	4700	3800	3855	3155	9400	5500	7900	5500
	8	110	4785	3900	3870	3170	9800	5500	8255	5500
180 MLB	2	110	4170	3400	3470	2825	7900	5500	6770	5500
	4	110	4185	3400	3440	2810	8500	5500	7200	5500
	6	110	4370	3570	3525	2885	9000	5500	7600	5500
180 MLC	4	110	3700	3055	3010	2470	7900	5500	6655	5440


Hauteurs d'axe 160 à 355

		Longueur du bout d'arbre	Rouleme	nts à billes			Roulemer	nts à rouleaux		
Hauteur		du bout d'arbre	20 000 he		40 000 he		20 000 he		40 000 he	
d'axe	Pôles	E (mm)	F _{x0} (N)	F _{Xmaxi} (N)						
200 MLA	2	110	5600	4685	4700	3925	10900	9100	9470	7900
	4	110	6285	5200	5240	4370	12500	9550	10700	8900
	6	110	6800	5700	5700	4770	13600	9550	11670	9550
	8	110	6800	5700	5600	4685	14100	9550	12000	9550
200 MLB	2	110	5670	4700	4700	3925	11000	9200	9500	7900
	4	110	5700	4700	4700	3925	12000	9550	10185	8500
	6	110	6400	5370	5300	4425	13200	9550	11200	9385
200 MLC	2	110	5000	4185	4185	3500	10400	8700	8900	7455
	4	110	5400	4500	4425	3685	11600	9550	9800	8200
	6	110	5800	4885	4740	3955	12500	9550	10600	8800
200 MLD	2	110	4985	4170	4170	3485	10400	8700	8900	7400
225 SMA	2	110	6400	5400	5355	4500	13300	10700	11500	9700
	4	140	7300	5900	6155	4970	15400	10250	13200	10250
	6	140	7600	6200	6370	5140	16400	10250	14000	10250
	8	140	8500	6900	7100	5725	17900	10250	15300	10250
225 SMB	2	110	6100	5185	5155	4340	13000	10700	11200	9455
	4	140	7085	5700	5885	4755	15100	10250	12900	10250
	6	140	7100	5700	5840	4700	16000	10250	13500	10250
	8	140	8000	6485	6600	5340	17300	10250	14700	10250
225 SMC	2	110	5600	4700	4685	3940	12600	10600	10770	9070
	4	140	6400	5200	5300	4285	14500	10250	12385	10000
225 SMD	2	110	5500	4640	4600	3880	12420	10460	10640	8960
	4	140	5800	4700	4725	3800	13500	10250	11400	9270
250 SMA	2	140	7700	6285	6500	5285	17100	10900	14900	10900
200 0	4	140	8700	7000	7300	5900	19800	13800	17000	13785
	6	140	9400	7600	7800	6355	21600	13800	18400	13800
	8	140	9600	7800	7900	6400	22700	13800	19300	13800
250 SMB	2	140	7100	5800	6000	4885	16700	10900	14400	10900
200 01112	4	140	7800	6300	6470	5240	18900	13800	16200	13100
	6	140	8900	7200	7355	5955	21200	13800	18000	13800
250 SMC	2	140	6800	5500	5670	4600	16300	10900	14000	10900
200 01110	4	140	7400	6000	6055	4900	18100	13800	15400	12485
	6	140	8200	6600	6670	5400	20300	13800	17200	13800
280 SM	2	140	7350	6150	5800	4900	20350	6350	16550	6350
200 OIVI_	4	140	9150	7700	7250	6100	24750	9750	20100	9750
	6			8800	8300	6950	27950	9750	22650	9750
315 SM_		140	10450 7350	6250	5800	4950	20350	6300	16500	6300
OTO GIVI_	4	170	11350	9400	9000	7450	32750	10250	26550	10250
	6	170	13000	10250	10300	8500	36950	10250	30000	10250
315 ML	2	140	7400	6200	5050	5800	20550	6200	16700	6200
OTO WIL_	4	170	11350	9600	8950	7600	32700	14650	26550	14650
	6	170	11000	12950	8650	10250	36950	14650	30000	14650
215 1/			7450	6050	5850	5150		6050		6050
315 LK_	2	140					20800		16850	
	4	170	11450	9900	9000	7800	33150	14400	26900 30350	14400
OFF CM	6	170	11300	13050	8850	10250	37450	14400	.	14400
355 SM_	2	140	7350	6450	5800	5100	20700	7550	16750	7550
	4	210	15100	12350	11900	9850	45100	14650	36650	14650
055 14"	6	210	17250	14300	13600	11300	50950	14700	41350	14700
355 ML_	2	140	7400	6550	5750	5100	20800	7450	16850	7450
	4	210	15200	12800	11950	10050	45500	14550	36900	14550
	6	210	17350	14500	13650	11500	51350	14500	41700	14500
355 LK_	6	210	17450	13950	13650	11850	52100	13950	42250	13950

Charges axiales admissibles

Les tableaux suivants spécifient les charges axiales admissibles en Newton, en supposant une charge radiale nulle et une température ambiante de 25 °C. Les valeurs sont basées sur des conditions normales de fonctionnement à 50 Hz avec des roulements standards et une durée de vie des roulements calculée de 20 000 et 40 000 heures. A 60 Hz, les valeurs

doivent être réduites de 10 %. Pour les moteurs bi-vitesse, les valeurs doivent être basées sur la vitesse la plus élevée. Les charges admissibles en cas d'efforts radiaux et axiaux simultanés sont disponibles sur demande. Les efforts axiaux donnés $\boldsymbol{F}_{\!\scriptscriptstyle A\!\scriptscriptstyle D}$ supposent la précontrainte du roulement C.C. au moyen d'un point fixe.

Forme de montage IM B3

	20 000	heures					40 000 1	heures				
	2 pôles		4 pôles		6 pôles		2 pôles		4 pôles		6 pôles	
Hauteur	F _{AD}	F _{AZ}										
d'axe	N	N	N	N	N	N	N	N	N	N	N	N
160 MLA	2850	2850	3450	3450	3690	3690	2325	2325	2775	2775	2970	2970
160 MLB	2850	2850	3435	3435	3600	3600	2325	2325	2760	2760	2880	2880
160 MLC	2775	2775	3150	3150	3135	3135	2280	2280	2535	2535	2490	2490
160 MLD	2865	2865	2900	2900	-	-	2330	2330	2320	2320	-	-
160 MLE	2500	2500	_	_	_	_	 2025	2025	_	_	_	
180 MLA	3300	3300	3600	3600	4140	4140	2700	2700	2920	2920	3320	3320
180 MLB	3340	3340	3580	3580	3800	3800	2725	2725	2900	2900	3040	3040
180 MLC	_	_	3220	3220	_	_	 -	_	2560	2560	_	_
200 MLA	4460	4460	5000	5260	5000	5860	3640	3640	4260	4260	4720	4720
200 MLB	4440	4440	4720	4720	5000	5480	3620	3620	3840	3840	4420	4420
200 MLC	3940	3940	4480	4480	4980	4980	3180	3180	3620	3620	3980	3980
200 MLD	3940	3940	-	_	_	_	 3200	3200	-	-	-	_
225 SMA	4980	4980	5000	6080	5000	6520	4060	4060	4920	4920	5000	5260
225 SMB	4860	4860	5000	5880	5000	6020	3960	3960	4780	4780	4840	4840
225 SMC	4380	4380	5000	5240	-	-	3540	3540	4260	4260	-	-
225 SMD	4320	4320	4800	4800	_	_	 3480	3480	3820	3820	_	_
250 SMA	6000	6080	6000	7140	6000	7880	4920	4920	5820	5820	6000	6380
250 SMB	5620	5620	6000	6320	6000	7480	4540	4540	5100	5100	6000	6040
250 SMC	5260	5260	5960	5960	6000	6860	 4220	4220	4760	4760	5520	5520
280 SM_	6200	4200	7900	5900	9100	7100	4850	2850	6100	4100	7000	5000
315 SM_	6100	4100	9250	7250	10700	8700	4750	2750	7100	5100	8150	6150
315 ML_	6000	4000	9150	7150	10550	8550	4700	2700	7050	5050	8050	6050
315 LK_	5900	3900	8950	6950	10250	8250	4600	2600	6850	4850	7750	5750
355 SM_	2950	6750	8450	12250	10250	14050	1650	5450	5750	9550	7050	10850
355 ML_	2900	6700	8350	12150	10100	13900	1550	5350	5600	9400	6850	10650
355 LK_	-	-	-	-	9800	13600	-	-	-	-	6600	10400

Forme de montage IM V1

	20 000 l	neures						40 000 h	neures				
	2 pôles		4 pôles		6 pôles			2 pôles		4 pôles		6 pôles	
Hauteur	F _{AD}	F _{AZ}	F _{AD}	F _{AZ}	F _{AD}	F _{AZ}		F _{AD}	F _{AZ}	F _{AD}	F _{AZ}	F _{AD}	F _{AZ}
d'axe	N	N	N	N	N	N		N	N	N	N	N	N
160 MLA	3100	2578	3820	3150	4100	3410		2570	2048	3120	2450	3325	2635
160 MLB	3120	2570	3880	3085	4120	3240		2580	2030	3180	2385	3360	2480
160 MLC	3080	2500	3620	2770	3680	2700		2560	1980	2985	2135	3005	2025
160 MLD	3220	2540	3420	2470	-	-		2665	1985	2820	1870	-	-
160 MLE	2900	2150	-	-	-	-		2420	1670	-	-	_	-
180 MLA	3660	2940	4160	3150	4800	3675		3060	2340	3460	2450	3940	2815
180 MLB)	3760	2960	4220	3095	4500	3285		3125	2320	3500	2375	3700	2485
180 MLC)	-	_	3880	2660	_	-		_	-	3220	2000	-	_
200 MLA	5000	3965	5000	4680	5000	5265	· · · · · · · · · · · · · · · · · · ·	4200	3125	5000	3640	5000	4065
200 MLB	5000	3905	5000	4060	5000	4800		4220	3085	4700	3120	5000	3660
200 MLC	4600	3385	5000	3775	5000	4165		3880	2665	4520	2875	5000	3105
200 MLD	4660	3370	-	-	-	-		3925	2635	-	-	-	-
225 SMA	5000	4375	5000	5445	5000	5735	•	4780	3455	5000	4225	5000	4395
225 SMB	5000	4245	5000	5175	5000	5155		4780	3345	5000	3995	5000	3915
225 SMC	5000	3670	5000	4445	-	-		4440	2900	5000	3425	-	=
225 SMD	5000	3590	5000	3895	-	-		4400	2790	5000	2935	-	-
250 SMA	6000	5345	6000	6300	6000	6950		5840	4225	6000	4920	6000	5350
250 SMB	6000	4830	6000	5325	6000	6370		5640	3810	6000	4085	6000	4830
250 SMC	6000	4395	6000	4900	6000	5575		5400	3415	6000	3700	6000	4135
280 SM_	7800	3100	9950	4550	11650	5450	-	6450	1750	8150	2750	9550	3300
315 SM_	8300	2600	12200	5300	14500	6150		6950	1250	10000	3150	11950	3600
315 ML_	8700	2200	12650	4850	15150	5500		7350	850	10500	2650	12600	2950
315 LK_	9350	1550	13650	3850	16550	4100		8000	200	11500	1650	14000	1550
355 SM_	6600	4300	13900	8600	17000	9550		5200	2950	11100	5800	13700	6250
355 ML_	7050	3800	14600	7900	18000	8550		5700	2450	11800	5100	14700	5250
355 LK_	-	-	-	-	19500	7050		-	-	-	-	16200	3750

Informations pour commander

Pour toute commande, vous devez spécifier au minimum les données suivantes, comme dans l'exemple ci-après.

Le code produit est établi comme décrit ci-après.

Type de moteur M4BP 280 SMB

Nombre de pôles

Forme de montage (code IM) IM B3 (IM 1001)

Puissance nominale 75 kW

Code produit 3GBP281220-ADK

Codes options, au besoin

Hauteur d'axe

Signification du code produit :

Positions 1 à 4

3GBP = Moteur asynchrone fermé, auto-ventilé, gamme fonte

Positions 5 et 6

Hauteur d'axe normalisée IEC

16 = 160

18 = 180

20 = 200 **22** = 225

25 = 250

28 = 280

31 = 315

35 = 355

Position 7

Vitesse (paires de pôles)

1 = 2 pôles

2 = 4 pôles

3 = 6 pôles

Positions 8 à 10

Longueur de fer

Position 11

- (tiret)

Position 12

Forme de montage

A = Moteur à pattes, boîte à bornes sur le dessus

R = Moteur à pattes ; boîte à bornes à droite vue côté commande (C.C.)

L = Moteur à pattes ; boîte à bornes à gauche vue côté commande (C.C.)

 ${f B}={\sf Moteur}\ {\grave{\sf a}}\ {\sf bride}$; trous lisses

C = Moteur à bride ; trous taraudés (hauteurs d'axe 71 à 112)

H = Moteur à pattes et à bride ; bride à trous lisses, boîte à bornes sur le dessus

J = Moteur à pattes et à bride ; bride à trous taraudés

S = Moteur à pattes et bride ; boîte à bornes à droite vue côté commande (C.C.)

T = Moteur à pattes et bride ; boîte à bornes à gauche vue côté commande (C.C.)

V = Moteur à bride ; bride spéciale

F = Moteur à pattes et à bride ; bride spéciale

Position 13

Code de tension et fréquence

Moteurs monovitesse

B 380 V∆ 50 Hz

D 400 VΔ, 415 VΔ, 690 VY 50 Hz

E 500 V∆ 50 Hz

F 500 VY 50 Hz

S 230 V∆, 400 VY, 415 VY 50 Hz

T 660 V∆ 50 Hz

U 690 V∆ 50 Hz

X Autre tension nominale, couplage ou fréquence, 690 V maxi

Moteurs bi-vitesse

A 220 V 50 Hz

B 380 V 50 Hz

D 400 V 50 Hz

E 500 V 50 Hz

S 230 V 50 Hz

X Autre tension nominale, couplage ou fréquence, 690 V maxi

Remarque

Code de tension X : le code option 209 pour tension ou fréquence non standard (bobinage spécial) doit être commandé.

Position 14

 $\underline{\text{Ex\'ecution}}: \textbf{A, B, C...G...K} \ = \ \text{Le code de g\'en\'eration est suivi des codes options}$

Moteurs Premium BT • gamme fonte Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE3 selon IEC 60034-30 ; 2008

							Render	ment 1034-2-	1; 2007		Intens	sité	Coup	le		Managart		Nii saas da
										Facteur						Moment d'inertie		Niveau de pression
Puissa		_					100 %		50 %	puiss.	I_N	l _s	C_N	C_{L}	C_b	$J = 1/4 \text{ GD}^2$		sonore L _{PA}
kW		Гуре т		Code p		tr/min	charge	charge	charge	cos φ	A	I _N	Nm	C _N	C_N	kgm ²	kg	dB
3000 1				400 V		00.10	00.4	00.0	00.5	0.00	_		alisée		0.4	0.050	1.10	
11			160 MLA	3GBP	161 051-••G	2943	92.1	92.8	92.5	0.92	18.7	8.1	35.6		3.4	0.052	142	69
15 18.5			160 MLB 160 MLC		161 052-••G 161 053-••G	2943	92.6 93.1	93.4 93.9	93.2 93.9	0.92	25.4 30.8	8.4	48.6 60.0		3.4	0.062 0.072	171 184	69 69
22	•		180 MLA			2942	93.1	93.9	93.8	0.93	37.4	8.1	71.0		3.2	0.072	235	69
30			•••••	•••••	201 051-••G		94.2	94.9	94.7	0.90	51.0	7.8	96.8		3.1	0.116	299	72
37					201 052-••G		94.7	95.2	95.0	0.91	61.9	8.8	119	3.1	3.4	0.190	314	72
45			225 SMA		221 051-••G		95.2	95.3	94.7	0.90	75.8	8.0	144	2.9	2.9	0.323	410	74
55	•		250 SMA		251 051-••G		95.5	95.6	94.8	0.90	92.3	8.3	176	2.9	3.2	0.579	453	75
75			280 SMB		281 220-••K		95.5	95.4	94.6	0.87	130	7.3	240	2.1	2.9	0.9	665	77
90			280 SMC		281 230-••K	2981	95.7	95.6	94.8	0.88	154	8.0	288	2.5	3.1	1.15	725	77
110	• • • • • • • • • • • • • • • • • • • •			•••••	311 220-••K		95.9	95.7	95.0	0.87	190	6.7	352	1.9	2.6	1.4	940	77
132					311 230-••K		95.9	95.9	95.3	0.88	225	7.9	422	2.4	3.0	1.7	1025	77
160	-	M4BP	315 MLA	3GBP	311 410-●•K	2982	96.1	96.1	95.8	0.90	267	7.3	512	2.2	2.7	2.1	1190	77
200	1)	M4BP	355 SMA	3GBP	351 210-●●K	2984	96.2	96.1	95.5	0.89	337	7.6	640	2.0	3.1	3.0	1600	83
250	1)	И4ВР	355 SMB	3GBP	351 220-●•K	2983	96.3	96.3	95.9	0.90	416	7.6	800	2.2	3.0	3.4	1680	83
315	1)	M4BP	355 SMC	3GBP	351 230-●●K	2984	96.4	96.4	95.9	0.89	529	7.8	1008	2.3	2.8	3.6	1750	83
355	1)	M4BP	355 MLA	3GBP	351 410-●●K	2982	96.5	96.5	96.3	0.90	589	7.5	1136	2.3	2.6	4.1	2000	83
3000 1	tr/mi	n = 2 _l	oôles	400 V	50 Hz						Série	puiss	sance	augn	nenté	е		
200	ı	M4BP	315 MLB	3GBP	311 420-••K	2982	96.2	96.2	96.0	0.90	333	6.8	640	1.9	2.6	2.2	1220	77
250	ı	M4BP	315 LKB	3GBP	311 820-●•K	2981	96.3	96.3	96.2	0.91	411	7.9	800	2.5	2.7	2.9	1540	77
1500 1	tr/mi	n = 4 _l	oôles	400 V	50 Hz	,					Série	norm	alisée					
11	ı	M4BP	160 MLA	3GBP	162 051-••G	1473	92.3	93.0	92.8	0.84	20.4	7.7	71.3	2.6	2.9	0.108	174	62
15	ı	M4BP	160 MLB	3GBP	162 052- •• G	1474	92.7	93.4	93.2	0.84	27.8	7.9	97.1	2.8	3.3	0.125	187	62
18.5			180 MLA		182 051-••G	1481	93.3	94.0	93.8	0.82	34.9	7.6	119	3.0	3.1	0.217	235	62
22			180 MLB			1480	93.3	94.1	94.1	0.82	41.5	8.2	141	2.8	3.1	0.217	236	62
30			200 MLA		202 051-••G		94.4	94.9	94.7	0.84	54.6	8.3	193	3.0	3.3	0.366	319	63
37			225 SMA			1482	94.9	95.5	95.4	0.86	65.4	7.7	238	2.8	3.1	0.536	399	66
45					222 052-••G		95.2	95.6	95.5	0.85	80.2	7.9	289	2.8		0.536	399	66
55			250 SMA		252 051-••G	1485	95.4	95.9	95.7	0.85	97.8	7.9	353	3.0	3.3	0.933	476	67
75					282 220-••K		95.7	95.8	95.3	0.85	133	7.4	481	2.5		1.5	665	66
90	• · · · · · · · • ·		280 SMC	••••••	282 230-••K	••••••	95.9	96.0	95.5	0.85	159	7.9	577	2.9	3.0	1.85	725	66
110			315 SMC			1490	96.3 96.4	96.3	95.7 95.9	0.85	193 232	7.8	704	2.4	3.1	2.9	1000	68 68
132 160					312 240-••K		96.4	96.4 96.4	96.1	0.85	232	7.9 7.9		2.6	3.2	3.2	1065 1220	68
200	•		315 MLB 355 SMA		312 420-••K 352 210-••K	1489	96.4	96.4	96.3	0.86	343	7.9	1026 1281	•••••	2.7	5.9	1610	74
250			355 SMA 355 SMB		352 220-••K		96.6	96.6	96.3	0.87	429	7.8	1601		2.7	6.9	1780	74
315					352 230-••K		96.7	96.7	96.3	0.87	553	7.8	2017		2.9	7.2	1820	74
355					352 410-••K		96.7	96.7	96.4	0.86	616	7.4	2273		2.9	8.4	2140	74
1500 1				400 V		1701	30.1	30.1	30.4	0.00			sance				21+0	
200			315 LKB		312 820-••K	1490	96.5	96.5	96.3	0.87	343	7.6	1281		2.9	5.0	1520	74
250			315 LKC		312 830-••K		96.6	96.6	96.4	0.87	429	7.8	1601		3.0	5.5	1600	74
200			JIJ LIKO	JUDI	312 00010	1-01	50.0	50.0	50.4	5.07	720	1.0	1001	2.0	0.0	5.0	1000	. –

¹⁾ Réduction de 3dB(A) du niveau de pression sonore avec ventilateur unidirectionnel. Le sens de rotation doit être spécifié à la commande, cf. codes options 044 et 045.

Les deux puces (●●) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour commander")

 $I_s / I_N = courant de démarrage$ C_I/C_N = couple à rotor bloqué $C_b / C_N = couple de décrochage$

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B.: les valeurs ne sont pas comparables sans connaître la méthode de mesure.

ABB a calculé les valeurs de rendement selon la méthode indirecte, les pertes supplémentaires étant déterminées par mesure.

Moteurs Premium BT • gamme fonte Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE3 selon IEC 60034-30 ; 2008

					Render IEC 60	nent 034-2-1	; 2007		Intens	ité	Coupl	le		Moment		Niveau de
D	_			\		== 0/	50.0 (Facteur			_	0	0	d'inertie $J = 1/4 \text{ GD}^2$	Massa	pression
Puissance kW	e Type moteur	Code r	oroduit	Vitesse tr/min	100 % charge		50 % charge		I _N	I _s		$\frac{C_1}{C_N}$	$\frac{C_b}{C_N}$	$J = 1/4 \text{ GD}^2$ kgm^2	kg	sonore L _{PA} dB
	min = 6 pôles	400 V			0110190	or iai go	or iai go	σσσφ		norm	alisée		O _N		9	
7.5	M4BP 160 MLA		163 051-••G	980	90.8	91.5	91.0	0.78	15.2	7.9		1.7	3.3	0.114	173	59
11	M4BP 160 MLB	3GBP	163 052-••G	979	91.2	91.8	91.1	0.74	23.5	8.5	107	2.2	3.9	0.131	186	59
15	M4BP 180 MLA	3GBP	183 052-••G	987	92.2	92.5	91.5	0.77	30.4	7.7	145	2.2	3.5	0.225	234	59
18.5	M4BP 200 MLA	3GBP	203 051-••G	990	92.9	93.2	92.7	0.77	37.3	7.5	178	2.6	3.2	0.448	292	63
22	M4BP 200 MLB	3GBP	203 052-••G	990	93.3	93.7	93.1	0.79	43.0	7.8	212	2.6	3.2	0.531	318	63
30	M4BP 225 SMA	3GBP	223 051-••G	989	94.1	94.7	94.5	0.81	56.8	7.9	289	2.8	3.1	0.813	393	63
37	M4BP 250 SMA	3GBP	253 051-••G	991	94.5	95.0	94.8	0.83	68.0	7.7	356	2.7	2.9	1.486	468	63
45	M4BP 280 SMB	3GBP	283 220-●•K	991	94.8	94.9	94.2	0.86	79.6	6.9	433	2.4	2.6	2.2	680	65
55	M4BP 280 SMC	3GBP	283 230-●●K	990	95.1	95.1	94.7	0.86	97.0	6.8	530	2.4	2.6	2.85	725	65
75	M4BP 315 SMC	3GBP	313 230-●●K	993	95.3	95.3	94.8	0.84	135	7.0	721	2.2	2.8	4.9	1000	67
90	M4BP 315 SMD	3GBP	313 240-●●K	994	95.5	95.5	94.9	0.83	163	7.2	864	2.4	2.9	4.9	1040	67
110	M4BP 315 MLB	3GBP	313 420-●●K	993	95.5	95.5	95.1	0.84	197	6.9	1057	2.3	2.7	6.3	1200	68
132	M4BP 315 LKA	3GBP	313 810-●●K	993	95.7	95.7	95.4	0.83	239	6.9	1269	2.4	2.7	7.3	1410	68
160	M4BP 355 SMB	3GBP	353 220-●●K	995	95.9	95.9	95.5	0.83	290	7.0	1535	2.1	2.7	9.7	1680	73
200	M4BP 355 SMC	3GBP	353 230-●●K	995	96.0	96.0	95.7	0.83	362	7.3	1919	2.3	2.8	11.3	1820	73
250	M4BP 355 MLB	3GBP	353 420-●•K	995	96.0	96.0	95.8	0.83	452	7.1	2399	2.3	2.7	13.5	2180	73
315	M4BP 355 LKA	3GBP	353 810-●●K	994	96.0	96.0	95.8	0.83	570	6.9	3026	2.3	2.6	15.5	2500	76
355	M4BP 355 LKB	3GBP	353 820-●•K	995	96.0	96.0	95.6	0.80	667	7.7	3407	2.7	2.9	16.5	2600	76
	min = 6 pôles	400 V									ance		enté	е		
160	M4BP 315 LKC	3GBP	313 830-••K	994	95.9	95.9	95.5	0.83	290	7.4	1537	2.7	2.9	9.2	1600	68

Les deux puces (●●) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour commander")

 $I_s / I_N = courant de démarrage$ $<math>C_I / C_N = couple à rotor bloqué$ $C_b / C_N = couple de décrochage$

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B.: les valeurs ne sont pas comparables sans connaître la méthode de mesure.

ABB a calculé les valeurs de rendement selon la méthode indirecte, les pertes supplémentaires étant déterminées par mesure.

Moteurs Process Performance BT - IE2 Gamme fonte

Moteurs asynchrones triphasés fermés BT Hauteurs d'axe 71 à 450 Puissances 0.25 à 1000 kW

www.abb.com/motors&generators

Conception mécanique

Les moteurs Process Performance sont développés en collaboration avec les clients de divers secteurs industriels tels que ceux de l'eau, du papier et de l'extraction minière.

Les moteurs de la gamme fonte incluent en standard les éléments suivants :

- Classe de rendement IE2
- Capot de ventilateur métallique
- Sondes PTC dans les bobinages
- Trous de purge

A partir de la hauteur d'axe 160 :

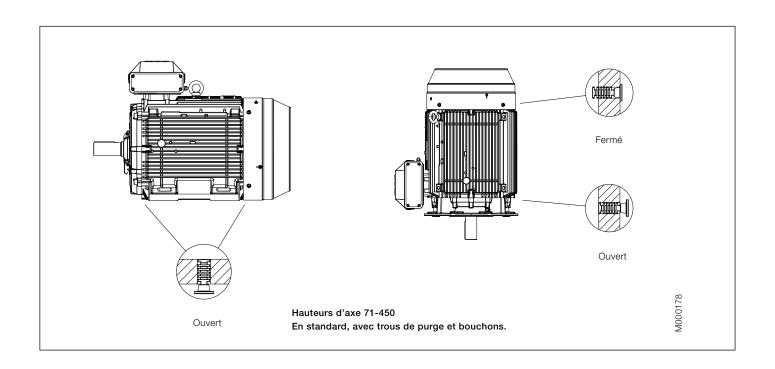
- Graisseurs et prises pour capteurs SPM
- Plaque signalétique en acier inoxydable
- Borne de masse extérieure

Stator

La carcasse moteur, les pattes, les flasques et paliers, et la boîte à bornes sont en fonte. Des pattes intégralement en fonte permettent un montage très rigide et minimisent les vibrations.

Les moteurs peuvent être soit à pattes, soit à bride, ou combiner ces deux modes de montage.

Trous de purge


Les moteurs destinés à fonctionner dans des environnements fortement humides, et plus particulièrement en service intermittent, doivent être dotés de trous de purge. La désignation IM (ex. IM 3031) spécifie la forme de montage du moteur.

Les hauteurs d'axe 71 à 450 comportent des trous de purge obturés par des bouchons ouverts à la livraison. Au moment du montage des moteurs, vérifiez que ces trous de purge sont bien dirigés vers le bas.

En cas de montage à arbre vertical, le bouchon supérieur doit être complètement enfoncé au moyen d'un marteau. Dans des environnements très poussiéreux, les deux bouchons devront être complètement enfoncés.

Lorsque le mode de montage diffère de celui du moteur à pattes IM B3, la commande doit préciser le code option 066.

Cf. codes options 065 et 066 pour "Trous de purge".

Roulements

Les moteurs sont équipés en standard de roulements à une seule rangée de billes (cf. tableaux ci-dessous). Les moteurs ABB disposent, en option, de roulements à rouleaux (NU- ou NJ-) C.C. particulièrement adaptés à des entraînements poulie-courroie et permettant de supporter des charges radiales importantes.

En cas de charges axiales importantes, des roulements à billes à contact oblique doivent être utilisés (option). Lors de la commande d'un moteur à roulements à billes à contact oblique, la forme de montage ainsi que le sens d'application et la valeur de la charge axiale doivent être précisés. Pour des roulements spéciaux, cf. codes options.

Série normalisée avec roulements à billes

Hauteur	Nombre	Roulements à billes	
d'axe	de pôles	D-end	N-end
71	2-8	6203-2Z/C3	6202-2Z/C3
80	2-8	6204-2Z/C3	6203-2Z/C3
90	2-8	6205-2Z/C3	6204-2Z/C3
100	2-8	6206-2Z/C3	6205-2Z/C3
112	2-8	6206-2Z/C3	6205-2Z/C3
132	2-8	6208-2Z/C3	6208-2Z/C3
160	2-12	6309/C3	6209/C3
180	2-12	6310/C3	6209/C3
200	2-12	6312/C3	6210/C3
225	2-12	6313/C3	6212/C3
250	2-12	6315/C3	6213/C3
280	2	6316/C3	6316/C3
	4-12	6316/C3	6316/C3
315	2	6316/C3	6316/C3
	4-12	6319/C3	6316/C3
355	2	6316M/C3	6316M/C3
	4-12	6322/C3	6316/C3
400	2	6317M/C3	6317M/C3
	4-12	6324/C3	6319/C3
450	2	6317M/C3	6317M/C3
	4-12	6326M/C3	6322/C3

Série avec roulements à rouleaux, code option 037

Hauteur	Nombre	Roulements à rouleaux, code option 037
d'axe	de pôles	C.C.
71	2-8	NU 303
80	2-8	NU 304
90	2-8	NU 305
100	2-8	NU 306
112	2-8	NU 306
132	2-8	NU 308
160	2-12	NU 309 ECP
180	2-12	NU 310 ECP
200	2-12	NU 312 ECP
225	2-12	NU 313 ECP
250	2-12	NU 315 ECP
280	2	1)
	4-12	NU 316/C3
315	2	1)
	4-12	NU 319/C3
355	2	1)
	4-12	NU 322/C3
400	2	1)
	4-12	NU 324/C3
450	2	1)
	4-12	NU 326/C3

Série à roulements à billes à contact oblique, codes options 058 et 059 (Roulements et lubrification)

Hauteur d'axe	Nombre de pôles	Roulements à billes à conta oblique	
		C.C.	C.O.C.
71	2-8	7303 B	7202 B
80	2-8	7304 B	7203 B
90	2-8	7305 B	7204 B
100	2-8	7306 B	7205 B
112	2-8	7306 B	7205 B
132	2-8	7308 B	7208 B

Point fixe

La bague extérieure du roulement côté commande peut être bloquée axialement avec un couvercle sur le roulement intérieur. La bague intérieure est bloquée grâce à une faible tolérance sur l'arbre.

Tous les moteurs sont équipés en standard d'un point fixe côté commande (C.C.).

Dispositif de blocage rotor (pour le transport)

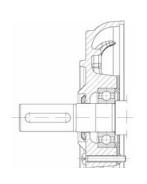
Le rotor des moteurs équipés de roulements à rouleaux ou à billes à contact oblique est immobilisé par un dispositif spécial qui protège les roulements des vibrations pendant le transport. Une étiquette spéciale signale à l'utilisateur si les moteurs de hauteurs d'axe 280 à 450 sont dotés d'un tel dispositif.

Le dispositif peut également être monté lors de toute opération de déplacement ou de manutention susceptible d'endommager les roulements.

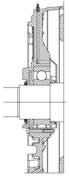
¹⁾ Sur demande

Joints d'étanchéité

La taille et le type des joints d'étanchéité pour les hauteurs d'axe 71 à 450 sont spécifiés dans les tableaux ci-dessous.

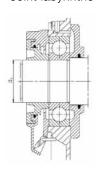

		Série normalisée		Autre série
Hauteur	Nombre	Joint axial		Joint radial (DIN 3760)
d'axe	de pôles	C.C.	C.O.C.	Code Option 072
71	2-12	Joint à lèvres 17x32x4	-	17x28x7
80	2-12	Joint à lèvres 20x35x4	-	20x40x7
90	2-12	Joint à lèvres 25x40x4	-	25x42x7
100	2-12	Joint à lèvres 30x47x4,5	-	30x47x7
112	2-12	Joint à lèvres 30x47x4,5	-	30x47x7
132	2-12	Joint à lèvres 40x57x4,5	V-40A	40x62x7
160	2-12	RB45	V-45A	45x62x8
180	2-12	RB50	RB45	50x68x8
200	2-12	RB60	V-50A	60x80x8
225	2-12	RB65	V-60A	65x85x10
250	2-12	RB75	V-65A	75x95x10

Joint axial :

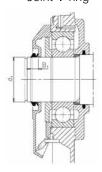

RB45...75 = Joint Gamma V50...95 = Joint V-ring

Hauteur	Nombre	Série normalisée		Autre série	
d'axe	de pôles	C.C.	C.O.C.	C.C.	C.O.C.
280	2	Joint labyrinthe	Joint axial VS80	-	Joint labyrinthe
280	4-12	Joint axial VS80	Joint axial VS80	Joint labyrinthe	Joint labyrinthe
				Joint radial 80x110x10	Joint radial 80x110x10
315	2	Joint labyrinthe	Joint axial VS80	-	Joint labyrinthe
315SM, ML	4-12	Joint axial VS95	Joint axial VS80	Joint labyrinthe	Joint labyrinthe
				Joint radial 95x125x10	Joint radial 80x110x10
315LK	4-12	Joint labyrinthe	Joint axial VS80	-	Joint labyrinthe
					Joint radial 80x110x10
355	2	Joint labyrinthe	Joint axial VS80		Joint labyrinthe
355	4-12	Joint labyrinthe	Joint axial VS80	-	Joint labyrinthe
400	2	Joint labyrinthe	Joint labyrinthe	-	-
400	4-12	Joint labyrinthe	Joint axial VS95	-	Joint labyrinthe
450	2	Joint labyrinthe	Joint labyrinthe	-	-
450	4-12	Joint labyrinthe	Joint labyrinthe	-	-

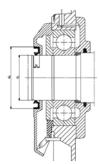
Hauteurs d'axe 71 à 132



Hauteurs d'axe 160 à 250



Hauteurs d'axe 280 à 450


Joint labyrinthe

Joint V-ring

Joint radial

Durée de vie des roulements

La durée de vie normale d'un roulement (L_{10h}) telle que définie et préconisée par l'ISO 281 correspond au nombre d'heures de fonctionnement atteint ou dépassé par 90 % des roulements identiques testés dans des conditions spécifiques. 50 % des roulements atteignent au moins cinq fois cette durée de vie.

La durée de vie calculée $L_{\tiny 10h}$ pour la transmission d'énergie au moyen d'un accouplement (machine à arbre horizontal) est :

Hauteurs d'axe 280 à 450 ≥ 200 000 heures

Lubrification

A la livraison, les moteurs sont lubrifiés avec une graisse de qualité. Avant la première mise en route, consultez le manuel du moteur pour des informations détaillées et les instructions. Le type de graisse préconisé est spécifié dans le manuel du moteur fourni ou, dans le cas des hauteurs d'axe de 160 à 450, sur la plaque de lubrification fixée sur la carcasse du moteur. Cf. exemple de plaque de lubrification page 44.

Moteurs à roulements graissés à vie

La série normalisée en hauteurs d'axe 71 à 132 est équipée en standard de roulements graissés à vie. Les moteurs de hauteurs d'axe 160 à 250 peuvent également être dotés de roulements graissés à vie. Ces roulements sont lubrifiés avec une graisse de qualité et haute température. Les types de roulement figurent sur les plaques signalétiques.

Les valeurs de durée de vie suivantes des roulements sont données à titre indicatif ; elles varient selon l'application et les conditions de charge :

Moteurs 4-8 pôles, environ 40 000 h Moteurs 2 pôles, environ 20 000 h

Intervalles de lubrification

Pour les intervalles de lubrification, ABB applique le principe de durée de vie L, (fiabilité des roulements assurée sur 99 % des moteurs au cours de l'intervalle). Les intervalles de lubrification peuvent également être calculés selon le principe L₁₀ qui sont le double des valeurs L₁. Les valeurs sont disponibles auprès d'ABB sur demande.

Méthode de lubrification des moteurs fonte

M3BP 71-132 Roulements graissés à vie en standard M3BP 71-132 Roulements regraissables en option M3BP 160-450 Roulements regraissables en standard M3BP 160-250 Roulements graissés à vie en option

Moteurs équipés de graisseurs

Pour les hauteurs d'axe 280 à 450, les organes de roulement sont conçus pour pouvoir utiliser une tête de soupape qui simplifie la lubrification, celle-ci se faisant avec le moteur en marche.

Les graisseurs sont dotés de soupapes d'évacuation de la graisse qui doivent être ouvertes avant le graissage et refermées 1 à 2 heures après pour garantir une parfaite étanchéité des roulements à la poussière et autres impuretés.

Un collecteur de graisse peut éventuellement être utilisé (cf. code option 433).

Les tableaux suivants donnent les intervalles de lubrification selon le principe L, pour différentes vitesses à une température ambiante de 25 °C. Ces valeurs s'appliquent aux moteurs à arbre horizontal (B3) avec une température des roulements d'environ 80 °C et en utilisant une graisse de qualité supérieure à base de savon complexe au lithium et aux minéraux ou d'huile PAO.

Pour en savoir plus, cf. manuel des moteurs BT ABB.

Intervalles de lubrification selon le principe L₁

Hauteur	Quantité de	kW	3600	3000	kW	1800	1500	kW	1000	kW	500-900
d'axe	graisse		tr/min	tr/min		tr/min	tr/min		tr/min		tr/min
	g/roulement										
Roulemer	nts à billes										
Intervalles de lubrification hrs/fonctionnement											
160	25	≤ 18,5	9000	12000	≤ 15	18000	21500	≤ 11	24000	toutes	24000
160	25	> 18,5	7500	10000	> 15	15000	18000	> 11	22500	toutes	24000
180	30	≤ 22	7000	9000	≤ 22	15500	18500	≤ 15	24000	toutes	24000
180	30	> 22	6000	8500	> 22	14000	17000	> 15	21000	toutes	24000
200	40	≤ 37	5500	8000	≤ 30	14500	17500	≤ 22	23000	toutes	24000
200	40	> 37	3000	5500	> 30	10000	12000	> 22	16000	toutes	20000
225	50	≤ 45	4000	6500	≤ 45	13000	16500	≤ 30	22000	toutes	24000
225	50	> 45	1500	2500	> 45	5000	6000	> 30	8000	toutes	10000
250	60	≤ 55	2500	4000	≤ 55	9000	11500	≤ 37	15000	toutes	18000
250	60	> 55	1000	1500	> 55	3500	4500	> 37	6000	toutes	7000
280	60	toutes	2000	3500	=	=	=	=	-	-	-
280	60	-	=	=	toutes	8000	10500	toutes	14000	toutes	17000
280	35	toutes	1900	3200		-	-		-		-
280	40		=	=	toutes	7800	9600	toutes	13900	toutes	15000
315	35	toutes	1900	3200		-	-		-		-
315	55		-	-	toutes	5900	7600	toutes	11800	toutes	12900
355	35	toutes	1900	3200		-	-		-		-
355	70		=	-	toutes	4000	5600	toutes	9600	toutes	10700
400	40	toutes	1500	2700		-			-	-	-
400	85		-	-	toutes	3200	4700	toutes	8600	toutes	9700
450	40	toutes	1500	2700		=	=		=		-
450	95		-	-	toutes	2500	3900	toutes	7700	toutes	8700

Hauteur	Quantité de	kW	3600	3000	kW	1800	1500	kW	1000	kW	500-900
d'axe	graisse		tr/min	tr/min		tr/min	tr/min		tr/min		tr/min
	g/roulement										
Roulemer	nts à rouleaux										
Intervalle	s de lubrification	on hrs/fonc	tionnement								
160	25	≤ 18,5	4500	6000	≤ 15	9000	10500	≤ 11	12000	toutes	12000
160	25	> 18,5	3500	5000	> 15	7500	9000	> 11	11000	toutes	12000
180	30	≤ 22	3500	4500	≤ 22	7500	9000	≤ 15	12000	toutes	12000
180	30	> 22	3000	4000	> 22	7000	8500	> 15	10500	toutes	12000
200	40	≤ 37	2750	4000	≤ 30	7000	8500	≤ 22	11500	toutes	12000
200	40	> 37	1500	2500	> 30	5000	6000	> 22	8000	toutes	10000
225	50	≤ 45	2000	3000	≤ 45	6500	8000	≤ 30	11000	toutes	12000
225	50	> 45	750	1250	> 45	2500	3000	> 30	4000	toutes	5000
250	60	≤ 55	1000	2000	≤ 55	4500	5500	≤ 37	7500	toutes	9000
250	60	> 55	500	750	> 55	1500	2000	> 37	3000	toutes	3500
280	60	toutes	1000	1750	-	-	-	-	-	-	-
280	70	-	-	-	toutes	4000	5250	toutes	7000	toutes	8500
280	35	toutes	900	1600		-	-		-		-
280	40		-	-	toutes	4000	5300	toutes	7000	toutes	8500
315	35	toutes	900	1600		-	-		-		-
315	55		-	-	toutes	2900	3800	toutes	5900	toutes	6500
355	35	toutes	900	1600		-	-		-		-
355	70		-	-	toutes	2000	2800	toutes	4800	toutes	5400
400	40	toutes	-	1300		-	-		-		-
400	85		-	-	toutes	1600	2400	toutes	4300	toutes	4800
450	40	toutes	-	1300		-	-		-		-
450	95		-	-	toutes	1300	2000	toutes	3800	toutes	4400

Diamètre de la poulie

Une fois la durée de vie des roulements déterminée, le diamètre mini admissible de la poulie peut être calculé en utilisant F_R comme suit:

$$D = \frac{1.9 \cdot 10^7 \cdot K \cdot P}{n \cdot F_R}$$

avec:

D =diamètre de la poulie, mm P= puissance requise, kW vitesse moteur, tr/min n =

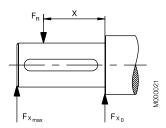
K= facteur de tension de la courroie, varie selon le type de courroie et le service type. Valeur courante pour les

courroies trapézoïdales : 2,5

effort radial admissible $F_{R} =$

Charges admissibles sur l'arbre

Les tableaux spécifient la charge radiale admissible en Newton, en supposant une charge axiale nulle et une température ambiante de 25 °C. Les valeurs sont basées sur des conditions normales de fonctionnement à 50 Hz et des durées de vie calculées de 20 000 et 40 000 heures pour les hauteurs d'axe 71 à 450.


Les moteurs sont des machines à pattes IM B3 avec les charges dirigées latéralement. Dans certains cas, la résistance de l'arbre affecte les niveaux de charge admissibles. A 60 Hz, les valeurs doivent être réduites de 10 %. Pour les moteurs bi-vitesse, les valeurs doivent être basées sur la vitesse la plus élevée.

Les charges admissibles en cas d'efforts radiaux et axiaux simultanés sont disponibles sur demande.

Si la charge radiale est appliquée entre les points X₀ et X_{maxi} , l'effort admissible $F_{\rm R}$ peut être calculé avec la formule suivante:

$$F_{R} = F_{X0} - \frac{X}{F} (F_{X0} - F_{Xmaxi})$$

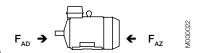
E = longueur du bout d'arbre de la série normalisée

Charges radiales admissibles

Hauteurs d'axe 71 à 132

		Longueur	Roulements	Roulements à billes							
Handanii		du bout d'arbre E (mm)	20 000 heure	s	40 000 heures	S					
Hauteur d'axe	Pôles	` '	F _{x0} (N)	F _{Xmaxi} (N)	F _{xo} (N)	F _{Xmaxi} (N)					
71	2	30	815	740	720	615					
	4	30	815	740	720	615					
	6	30	815	740	720	615					
	8	30	815	740	720	615					
80	2	40	1120	970	950	740	•••••••••••••••••••••••••••••••••••••••				
	4	40	1120	970	950	740					
	6	40	1120	970	950	740					
	8	40	1120	970	950	740					
90	2	50	1210	1050	1020	900	•				
	4	50	1210	1050	1020	900					
	6	50	1210	1050	1020	900					
	8	50	1210	1050	1020	900					
100	2	60	2280	1800	1930	1520					
	4	60	2280	1800	1930	1520					
	6	60	2280	1800	1930	1520					
	8	60	2280	1800	1930	1520					
112	2	60	2280	1800	1930	1520	•••••••••••••••••••••••••••••••••••••••				
	4	60	2280	1800	1930	1520					
	6	60	2280	1800	1930	1520					
	8	60	2280	1800	1930	1520					
132	2	80	2600	2100	2300	1900					
	4	80	2600	2100	2300	1900					
	6	80	2600	2100	2300	1900					
	8	80	2600	2100	2300	1900					

Hauteurs d'axe 160 à 450


		Longueur du bout	Roulemer	nts à billes			Roulements à rouleaux				
		d'arbre	20 000 he	ures	40 000 he	ures	20 000 he	ures	40 000 he	ures	
Hauteur d'axe	Pôles	E (mm)	$F_{x_0}(N)$	F _{Xmaxi} (N)	F _{x0} (N)	F _{Xmaxi} (N)	F _{x0} (N)	F _{Xmaxi} (N)	F _{x0} (N)	F _{Xmaxi} (N)	
60 MLA	2	110	3540	2740	2955	2285	7100	4300	6140	4300	
OO WILA	4	110	4000	3100	3325	2570	8000	4300	6870	4300	
	6	110	4170	3200	3440	2655	8600	4300	7270	4300	
	8	110	4600	3585	3855	2985	9300	4300	7955	4300	
60 MLB	2	110	3540	2740	2955	2270	7085	4300	6070	4300	
oo mee	4	110	4085	3300	3370	2725	8300	4300	7055	4300	
	6	110	4100	3355	3400	2755	8600	4300	7300	4300	
	8	110	4200	3270	3455	2670	9000	4300	7570	4300	
160 MLC	2	110	3400	2600	2855	2200	6800	4300	5885	4300	
IOO IVILO	4	110	3700	3000	3070	2485	7800	4300	6640	4300	
	6	110	3600	2900	2870	2325	8000	4300	6700	4300	
	8	110	4170	3370	3370	2725	9000	4300	7585	4300	
I60 MLD	2	110	3585	2900	3000	2440	7100	4300	6140	4300	
I OO IVILD	4	110	3400	2755	2755	2240	7600	4300	6370	4300	
60 MLE	.	110	3185	2570	2640	2140	6785	4300	5770	4300	
	2	-	-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · • · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······	· · · · · · • · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
80 MLA		110	4100 4270	3385 3485	3455 3525	2825 2885	8125 8600	5500 5500	7025 7300	5500 5500	
	4	110									
	6	110	4700	3800	3855	3155	9400	5500	7900	5500	
00 MI D	8	110	4785	3900	3870	3170	9800	5500	8255	5500	
80 MLB	2	110	4170	3400	3470	2825	7900	5500	6770	5500	
	4	110	4185	3400	3440	2810	8500	5500	7200	5500	
	6	110	4370	3570	3525	2885	9000	5500	7600	5500	
80 MLC	4	110	3700	3055	3010	2470	7900	5500	6655	5440	
00 MLA	2	110	5600	4685	4700	3925	10900	9100	9470	7900	
	4	110	6285	5200	5240	4370	12500	9550	10700	8900	
	6	110	6800	5700	5700	4770	13600	9550	11670	9550	
	8	110	6800	5700	5600	4685	14100	9550	12000	9550	
00 MLB	2	110	5670	4700	4700	3925	11000	9200	9500	7900	
	4	110	5700	4700	4700	3925	12000	9550	10185	8500	
	6	110	6400	5370	5300	4425	13200	9550	11200	9385	
00 MLC	2	110	5000	4185	4185	3500	10400	8700	8900	7455	
	4	110	5400	4500	4425	3685	11600	9550	9800	8200	
	6	110	5800	4885	4740	3955	12500	9550	10600	8800	
00 MLD	2	110	4985	4170	4170	3485	10400	8700	8900	7400	
25 SMA	2	110	6400	5400	5355	4500	13300	10700	11500	9700	
	4	140	7300	5900	6155	4970	15400	10250	13200	10250	
	6	140	7600	6200	6370	5140	16400	10250	14000	10250	
225 SMB	8 2	140	8500	6900	7100	5725	17900	10250 10700	15300	10250 9455	
220 SIVID	4	110 140	6100 7085	5185 5700	5155 5885	4340 4755	13000 15100	10700	11200 12900	10250	
	6	140	7100	5700	5840	4700	16000	10250	13500	10250	
	8	140	8000	6485	6600	5340	17300	10250	14700	10250	
225 SMC	2	110	5600	4700	4685	3940	12600	10600	10770	9070	
	4	140	6400	5200	5300	4285	14500	10250	12385	10000	
225 SMD	2	110	5500	4640	4600	3880	12420	10460	10640	8960	
	4	140	5800	4700	4725	3800	13500	10250	11400	9270	
250 SMA	2	140	7700	6285	6500	5285	17100	10900	14900	10900	
	4	140	8700	7000	7300	5900	19800	13800	17000	13785	
	6	140	9400	7600	7800	6355	21600	13800	18400	13800	
EO CMP	8	140	9600	7800	7900	6400	22700	13800	19300	13800	
50 SMB	2	140	7100 7800	5800 6300	6000 6470	4885 5240	16700 18900	10900 13800	14400	10900	
	4 6	140 140	7800 8900	7200	7355	5240 5955	21200	13800	16200 18000	13100 13800	
50 SMC	2	140	6800	5500	5670	4600	16300	10900	14000	10900	
	4	140	7400	6000	6055	4900	18100	13800	15400	12485	
	6	140	8200	6600	6670	5400	20300	13800	17200	13800	
.80 SM_	2	140	7300	6000	5800	4900	20400	6000	16500	6000	
_	4	140	9200	7800	7300	6200	25100	9200	20300	9200	
	6	140	10600	8900	8400	7000	28300	9200	23000	9200	
	8	140	11700	9200	9200	7800	30900	9200	25100	9200	
15 SM_	2	140	7300	6000	5800	4950	20300	6000	16500	6000	
	4	170	11400	9400	9000	7450	32500	9600	26600	9600	
	6	170	13000	9600	10300	8500	37000	9600	30000	9600	

Hauteurs d'axe 160 à 450

		Longueur	Roulemen	ıts à billes			Roulements à rouleaux					
		du bout d'arbre	20 000 he	ures	40 000 he	ures	20 000 he	ures	40 000 he	ures		
lauteur l'axe	Pôles	E (mm)	F _{x0} (N)	F _{Xmaxi} (N)	F _{xo} (N)	F _{Xmaxi} (N)	F _{x0} (N)	F _{xmaxi} (N)	F _{x0} (N)	F _{Xmaxi} (N)		
15 ML_	2	140	7400	6400	5850	5050	20600	5850	16700	5850		
	4	170	11500	9700	9100	7650	32700	13600	26500	13600		
	6	170	13200	11100	10400	8800	36900	13600	29900	13600		
	8	170	14500	12200	11500	9700	40200	13600	32600	13600		
15 LK	2	140	7400	6550	5800	5150	20800	5550	16800	5550		
	4	170	11500	10000	9100	7850	33100	13350	26800	13350		
	6	170	13200	11400	10450	9050	37300	13350	30300	13350		
	8	170	14600	12600	11550	10000	40800	13350	33100	13350		
55 SM_	2	140	7350	6450	5750	5050	20600	7200	16700	7200		
	4	210	15200	12600	12000	9950	45500	14000	36900	14000		
	6	210	17500	14000	13800	11400	51400	14000	41700	14000		
	8	210	19300	14000	15250	12600	56000	14000	45500	14000		
55 ML_	2	140	7350	6550	5750	5100	20800	6750	16800	6750		
	4	210	15300	12900	12000	10100	45900	13600	37200	13600		
	6	210	17600	13600	13900	11600	51500	13600	42100	13600		
	8	210	19400	13600	15300	12900	56000	13600	45900	13600		
55 LK_	2	140	7350	6650	5650	5100	21000	6550	17000	6550		
	4	210	15200	13000	11850	10200	46000	13000	37300	13000		
	6	210	17500	13000	13700	11900	52000	13000	42000	13000		
	8	210	19400	13000	15200	13000	56500	13000	46000	13000		
00 L_	2	170	7650	6850	4400	3900	23900	9050	19350	9050		
	4	210	15600	13550	12150	10550	52500	16000	43300	16000		
	6	210	17800	15450	13850	12000	60000	16000	48800	16000		
	8	210	19700	16000	15350	13350	65700	16000	53200	16000		
00 LK_	2	170	7650	6850	4400	3900	23900	9050	19350	9050		
	4	210	15600	11500	12150	10550	52500	11500	43300	11500		
	6	210	17800	11500	13850	11500	60000	11500	48800	11500		
	8	210	19700	11500	15350	11500	65700	11500	53200	11500		
50 L_	2	170	7400	6700	3500	3300	24000	7500	19000	7500		
	4	210	17000	15200	13000	11600	62000	25000	50000	25000		
	6	210	19000	17000	14000	13000	70000	24000	56000	24000		
	8	210	21300	19000	16500	14600	76000	23000	62000	23000		

Charges axiales admissibles

Les tableaux suivants spécifient les charges axiales admissibles en Newton, en supposant une charge radiale nulle et une température ambiante de 25 °C. Les valeurs sont basées sur des conditions normales de fonctionnement à 50 Hz avec des roulements standards et une durée de vie calculée de 20.000 et 40.000 heures. A 60 Hz, les valeurs doivent être réduites de 10 %. Pour les moteurs bi-vitesse, les valeurs doivent être basées sur la vitesse la plus élevée. Les charges admissibles en cas d'efforts radiaux et axiaux simultanés sont disponibles sur demande. Les efforts axiaux donnés ${\rm F_{AD}}$ supposent la précontrainte du roulement C.C. au moyen d'un point fixe.

Forme de montage IM B3

	20.000	heures							40.000	heures						
	2 pôles	3	4 pôles	3	6 pôles		8 pôles		2 pôles		4 pôles	;	6 pôles	3	8 pôles	
Hauteur	F _{AD}	F _{AZ}														
d'axe	N	Ν	Ν	N	Ν	N	Ν	N	N	Ν	N	Ν	Ν	N	Ν	Ν
71	810	420	1015	625	1155	765	1280	890	670	280	820	430	925	535	1015	625
30	1050	610	1320	875	1520	1080	1690	1250	845	410	1055	610	1200	775	1319	880
90	1150	630	1520	845	1650	1130	1830	1315	935	415	1230	550	1305	785	1445	925
100	1650	1000	2230	1580	2650	2000	3000	2355	1210	560	1645	995	1970	1320	2230	1580
12	1645	995	2220	1575	2645	1995	2995	2345	1200	550	1640	990	1965	1315	2225	1575
132	2300	1520	2905	2125	3380	2600	3750	2970	1820	1040	2275	1495	2640	1865	2920	2140
160 MLA	2850	2850	3450	3450	3690	3690	4155	4155	2325	2325	2775	2775	2970	2970	3315	3315
160 MLB	2850	2850	3435	3435	3600	3600	3750	3750	2325	2325	2760	2760	2880	2880	2970	2970
160 MLC	2775	2775	3150	3150	3135	3135	3675	3675	2280	2280	2535	2535	2490	2490	2910	2910
160 MLD	2865	2865	2900	2900	-	-	-	-	2330	2330	2320	2320	-	-	-	-
160 MLE	2500	2500	-	-	-	-	-	-	2025	2025	-	-	-	-	-	-
80 MLA	3300	3300	3600	3600	4140	4140	4220	4220	2700	2700	2920	2920	3320	3320	3360	3360
80 MLB	3340	3340	3580	3580	3800	3800	-	-	2725	2725	2900	2900	3040	3040	-	-
180 MLC	-	-	3220	3220	-	-	-	-	-	-	2560	2560	-	-	-	-
200 MLA	4460	4460	5000	5260	5000	5860	5000	5880	3640	3640	4260	4260	4720	4720	4700	4700
200 MLB	4440	4440	4720	4720	5000	5480	-	-	3620	3620	3840	3840	4420	4420	-	-
200 MLC	3940	3940	4480	4480	4980	4980	-	-	3180	3180	3620	3620	3980	3980	-	-
200 MLD	3940	3940	-	-	-	-	-	-	3200	3200	-	-	-	-	-	-
225 SMA	4980	4980	5000	6080	5000	6520	5000	7420	4060	4060	4920	4920	5000	5260	5000	5960
225 SMB	4860	4860	5000	5880	5000	6020	5000	6940	3960	3960	4780	4780	4840	4840	5000	5560
225 SMC	4380	4380	5000	5240	-	-	-	-	3540	3540	4260	4260	-	-	-	-
225 SMD	4320	4320	4800	4800	-	-	-	-	3480	3480	3820	3820	-	-	-	-
250 SMA	6000	6080	6000	7140	6000	7880	6000	8200	4920	4920	5820	5820	6000	6380	6000	6600
250 SMB	5620	5620	6000	6320	6000	7480	-	-	4540	4540	5100	5100	6000	6040	-	-
250 SMC	5260	5260	5960	5960	6000	6860	-	-	4220	4220	4760	4760	5520	5520	-	-
280 SM_	6200	4250	8000	6000	7250	9250	10300	8300	4900	2900	6250	4250	7150	5150	7950	5950
315 SM_	6180	4200	9400	7400	10900	8900	12000	10000	4850	2850	7250	5250	8350	6350	9200	7000
315 ML_	6050	4050	9250	7250	10650	8650	11500	9900	4750	2750	7100	5100	8100	6100	8900	6800
315 LK	6000	3950	9100	7150	10500	8500	11750	9750	4650	2650	7000	5000	7950	5950	8900	6900
355 SM_	3050	6850	8600	12400	10550	14350	12200	16000	1750	5550	5900	9700	7300	11100	8550	12350
355 ML_	2900	6700	8360	12150	10100	13900	12000	15800	1600	5400	5650	9450	6900	10700	7300	11000
355 LK_	2650	6450	8200	12000	9900	13700	11450	15250	1350	5150	5450	9250	6700	10500	7800	11600
100 L, ŪK_	2150	7150	7100	13100	8850	14850	10450	16450	1)	5800	4300	10300	5500	11500	6750	12750
450 L	1800	6800	7600	13500	9000	15000	10800	16800	1)	5500	4500	10500	5600	11500	7000	12900

Forme de montage IM V1

	20.000	heures								40.000 heures							
	2 pôles	;	4 pôles		6 pôles		8 pôles			2 pôles		4 pôles		6 pôles		8 pôles	
Hauteur	F _{AD}	F _{AZ}		F _{AD}	F _{AZ}												
d'axe	Ñ	Ñ	N	Ñ	N	Ñ	N	Ñ		Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	Ñ	N
71	830	410	1040	610	1200	740	1325	865		690	260	845	415	970	505	1059	590
80	1100	585	1400	830	1600	1035	1755	1200		900	375	1125	560	1275	715	1390	840
90	1230	585	1620	780	1770	1060	1930	1250	.	1010	365	1325	485	1425	715	1540	860
100	1755	910	2370	1465	2795	1890	3145	2235		1315	460	1790	880	2105	1205	2375	1460
112	1770	900	2380	1449	2810	1880	3160	2225		1325	455	1810	865	2130	1189	2390	1445
132	2480	1400	3200	1960	3660	2405	4030	2790		1950	915	2615	1275	2875	1710	3200	1955
160 MLA	3100	2578	3820	3150	4100	3410	4440	3845		2570	2048	3120	2450	3325	2635	3640	3045
160 MLB	3120	2570	3880	3085	4120	3240	4140	3450		2580	2030	3180	2385	3360	2480	3340	2650
160 MLC	3080	2500	3620	2770	3680	2700	4240	3260		2560	1980	2985	2135	3005	2025	3445	2465
160 MLD	3220	2540	3420	2470	-	-	-	-		2665	1985	2820	1870	-	-	-	-
160 MLE	2900	2150	-	- 3150	-	-	-	-	···•	2420	1670	- 0.400	- 0.450	-	-	-	-
180 MLA	3660	2940	4160		4800	3675	4960	3740		3060	2340	3460	2450	3940	2815	4040	2820
180 MLB	3760	2960	4220	3095	4500	3285	-	-		3125	2320	3500	2375	3700	2485	-	-
180 MLC 200 MLA	5000	- 3965	3880	2660 4680	5000	- 5265	5000	- 5195	···•	4000	3125	3220 5000	2000 3640	5000	4065	5000	3955
200 MLB	5000	3905	5000 5000	4060	5000	4800	5000	5195		4200 4220	3085	4700	3120	5000	3660		3933
200 MLC	4600	3385	5000	3775	5000	4165	-	-		3880	2665	4520	2875	5000	3105	-	-
200 MLD	4660	3370	3000	3113	3000	4100	-	-		3925	2635	4320	2013	3000	3103	-	-
225 SMA	5000	4375	5000	5445	5000	5735	5000	6535	···•	4780	3455	5000	4225	5000	4395	5000	5095
225 SMB	5000	4245	5000	5175	5000	5155	5000	6055		4780	3345	5000	3995	5000	3915	5000	4635
225 SMC	5000	3670	5000	4445	-	-	-	-		4440	2900	5000	3425	-	-	-	-
225 SMD	5000	3590	5000	3895	_	_	_	_		4400	2790	5000	2935	_	_	_	_
250 SMA	6000	5345	6000	6300	6000	6950	6000	7125	••••••	5840	4225	6000	4920	6000	5350	6000	5385
250 SMB	6000	4830	6000	5325	6000	6370	-	-		5640	3810	6000	4085	6000	4830	-	-
250 SMC	6000	4395	6000	4900	6000	5575	-	-		5400	3415	6000	3700	6000	4135	-	-
280 SM	7550	3150	9600	4550	11150	5500	12200	7000		6200	1800	7800	2750	9000	3350	9850	4700
315 SM	7950	2600	11750	5500	13600	6300	15350	7900	···•	6600	1300	9550	3300	11050	3750	12450	5000
315 ML	8650	2300	12500	5050	14900	5800	15400	6300		7300		10300	2900	12350	3250	13600	3400
315 LK_	9100	1350	13100	3850	15700	4100	16900	6300		7750		10900	1700	13100	1550	14100	3450
355 SM_	6350	4250	13250	8600	15650	9580	17350	12500	*	4950	2900	10450	5850	12350	6270	13600	8900
355 ML_	7100	3700	14600	7950	18050	8600	21100	11650		5750	2350	11850	5150	14700	5300	17000	7600
355 LK_	8250	2650	15650	6600	19100	7050	21200	8700		6900	1300	12850	3800	15800	3750	17500	5000
400 L, LK	_ 8650	2150	16050	6400	18450	6750	20100	8350		7220		13150	3400	15100	3400	16450	4700
450 L_	11500		20000	4400	26000	3700	27800	5500		10000		17700	1200	22200		23700	1350

Plaques signalétiques

Les plaques signalétiques donnent sous forme de tableau les valeurs de vitesse, de courant et de facteur de puissance pour trois tensions.

Les informations suivantes doivent apparaître sur la plaque signalétique du moteur, conformément à la norme

IEC 60034-30; 2008 et à la réglementation MEPS (Commission Régulation, EC, No 640/2009) :

- Rendement nominal mini à 100 %, 75 % et 50 % de charge nominale, classe de rendement (IE2 ou IE3) et année de fabrication

Hauteurs d'axe 71 à 90

ABB 3~Motor M3B	P 090	LD-4			IE2 ((
3GBP092325	-ASB	No.	E1013	09P6250	CI. F IP 55
6305-2Z/C3 -	620	4-2Z/C3			28 kg
O v	Hz	r/min	kW	Α	Cosφ
230 D / 400 Y	50	1435	1,5	5,5 / 3,2	0,78
415 Y	50	1440	1,5	3,2	0,76
F IE2-84,2(100%	6)-83,6	6(75%)-8	0,9(50	%) 2009	EC 60034-1

Hauteurs d'axe 100 à 132

\oplus		A	ABB		IE2	C E
3~Motor	M3BP 10	00 L 6		CI.	F IP 55	
3GBP10	3322-ASB					2009
Sr. No.	E100210	P4545				
,	V	Hz	r/min	kW	Α	Cos φ
23	0 D	50	950	1,5	6,4	0,69
40	0 Y	50	950	1,5	3,7	0,69
41	5 Y	50	955	1,5	3,7	0,68
IE2-82,1	(100%)-82	,2(75%	6)-80,2(50	0%)		
						()
	6306	-2Z/C3	4 6	205-2Z/C3		36 kg
Ф					IEC 6	60034-1

00442

Hauteurs d'axe 160 à 180

*	\BB	,				IE2	ϵ
3∼ Motor	M3BP	180	MLB 4	CI	.F II	55	IEC 60034-1
V		Hz	kW	r/min	Α	cos Ψ	duty
690	Υ	50	22	1475	24,0	0,83	S1
400	Δ	50	22	1475	41,5	0,83	S1
O 415	Δ	50	22	1477	40,4	10,82	S1 (
Prod.code	: 3G	BP1	32032-A	DG	No 3	GV09323	45678001
50 Hz: 18	2 - 92	2,1(100%) -	93,1(75%) -	- 93,0(50%) 2009
6313/C3			-	6212/C	3		222 kg
$\overline{}$			spo	re-parts:ww	w.abb.com	n∕partsonli:	ne

000402

Hauteurs d'axe 200 à 250

00403

Hauteurs d'axe 280 à 450 Plaque signalétique standard

Hauteurs d'axe 280 à 450 Plaque de lubrification fournie en standard

0		A	BB			0
Regrec	sing interv	als in d	uty ho	urs	S	
Bearin	gs	631	9 ج	D	6316	
Amour	nt of greas	se 90	9 -{	Ð	70g	
Mountine	Ambient	1800	1500)	1000	500-900
mountary	temp.	r/min	r/mi	n	r/min	r/min
Hor	25℃	6500	8500)	12500	16000
Hor	40°C	3250	4250)	6250	8000
Vert	25°C	3250	4250)	6250	8000
Vert	40°C	1630	2130)	3130	4000
Do no	t exceed t	he moto	r max.	s	peed	
The follo	wing or simila	r high perf	ormance	gre	ease can b	e used:
Esso	Unirex N2, N3	or S2	Mobil	Mo	bilith SHC	100
Shell	Albido EMS2		Klüber	ΚIί	iberplex BE	M 41-132
SKF	LGHQ 3		FAG	Are	canol TEMP	110
$\overline{0}$	See the	"Low Volto	ige Mot	ors	Manual"	0,

786000

Informations pour commander

Pour toute commande, vous devez spécifier au minimum les données suivantes, comme dans l'exemple ci-après.

Le code produit est établi comme décrit ci-après.

Type de moteur M3BP 160 MLC

Nombre de pôles


Forme de montage (code IM) IM B3 (IM1001)

Puissance nominale 18.5 kW

Code produit 3GBP161031-ADG

Codes options, au besoin

Hauteur d'axe

Signification du code produit :

Positions 1 à 4

3GBP = Moteur asynchrone fermé, auto-ventilé, gamme fonte

Positions 5 et 6

Hauteur d'axe normalisée IEC

71 = 71

80 = 80

90 = 90 **10** = 100

12 = 112

13 = 132

16 = 160

10 - 100

20 = 200

20 = 200

22 = 225

25 = 250

28 = 280 **31** = 315

35 = 355

40 = 400

45 = 450

Position 7

Vitesse (paires de pôles)

1 = 2 pôles

2 = 4 pôles

3 = 6 pôles4 = 8 pôles

5 = 10 pôles

6 = 12 pôles

7 = >12 poios

1 - >12 poles

8 = Moteurs bi-vitesse pour ventilateurs (couple constant)

9 = Moteurs multivitesse, bi-vitesse

Positions 8 à 10

Longueur de fer

Position 11

- (tiret)

Position 12

Forme de montage

A = Moteur à pattes, boîte à bornes sur le dessus

R = Moteur à pattes ; boîte à bornes à droite vue côté commande (C.C.)
 L = Moteur à pattes ; boîte à bornes à gauche vue côté commande (C.C.)

B = Moteur à bride ; trous lisses

C = Moteur à bride ; trous taraudés (hauteurs d'axe 71 à 112)

H = Moteur à pattes et à bride ; bride à trous lisses, boîte à bornes sur le dessus

 ${f J}={f Moteur}$ à pattes et à bride ; bride à trous taraudés

S = Moteur à pattes et bride ; boîte à bornes à droite vue côté commande (C.C.)

 ${f T}={f Moteur}$ à pattes et bride ; boîte à bornes à gauche vue côté commande (C.C.)

V = Moteur à bride ; bride spéciale

F = Moteur à pattes et à bride ; bride spéciale

Position 13

Code de tension et fréquence

Moteurs monovitesse

B 380 V∆ 50 Hz

D 400 VΔ, 415 VΔ, 690 VY 50 Hz

 $\textbf{E}~500~\text{V}\Delta~50~\text{Hz}$

F 500 VY 50 Hz

S 230 VA, 400 VY, 415 VY 50 Hz

 ${f T}$ 660 V Δ 50 Hz

U 690 V∆ 50 Hz

X Autre tension nominale, couplage ou fréquence, 690 V maxi

Moteurs bi-vitesse

A 220 V 50 Hz

B 380 V 50 Hz

D 400 V 50 Hz

F 500 V 50 Hz

S 230 V 50 Hz

X Autre tension nominale, couplage ou fréquence, 690 V maxi

Remarque

Code de tension X : le code option 209 pour tension ou fréquence non standard (bobinage spécial) doit être commandé.

Position 14

Exécution : A, B, C...G...K = Le code de génération est suivi des codes options

Moteurs Process Performance BT • gamme fonte Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE2 selon IEC 60034-30 ; 2008

						Render IEC 60	ment 034-2-1	; 2007		Intens	ité	Couple		_	Massaut		N.C
Puissance kW	Type m	oteur	Code pi	roduit	Vitesse tr/min	100 %	75 % charge	50 %	Facteu puiss.	Ir I _N A	$\frac{I_s}{I_N}$	C _N	$\frac{C_l}{C_N}$	$\frac{C_b}{C_N}$	Moment d'inertie J = 1/4 GD ² kgm ²	² Masse kg	Niveau de pression sonore L _{PA} dB
3000 tr/m			400 V 5		u/111111	oriargo	oriargo	oriargo	- 000 φ			nalisée	ON	ON	ilgiii	Ng	ub
0.37	МЗВР		3GBP	071 321-••B	2660	69.2	73.5	73.7	0.80	0.96	3.9	1.41	2.2	2.3	0.00039	11	58
0.55	МЗВР	71 MB	3GBP	071 322-••B		73.2	77.3	79.3	0.85	1.27	4.3	1.95	2.4	2.5	0.00051	11	56
0.75	МЗВР	80 MB	3GBP	081 322-••B		80.6	79.9	76.2	0.74	1.81	7.7	2.4	4.2	4.2	0.001	16	57
1.1	МЗВР	80 MC	3GBP	081 323-••B	2870	81.8	82.4	80.2	0.80	2.4	7.5	3.6	2.7	3.5	0.0012	18	60
1.5	МЗВР	90 SLB	3GBP	091 322-••B	2900	82.2	84.1	82.7	0.86	3.0	7.5	4.9	2.5	2.6	0.00254	24	69
2.2	МЗВР	90 SLC	3GBP	091 323-••B	2885	84.7	86.7	85.7	0.87	4.3	6.8	7.2	1.9	2.5	0.0028	25	64
3	МЗВР	100 LB	3GBP	101 322-••B	2925	85.2	84.9	82.8	0.86	5.9	9.1	9.7	3.1	3.5	0.00528	36	68
4	МЗВР	112 MB	3GBP	111 322-••B	2895	86.1	87.0	86.6	0.86	7.7	8.1	13.1	2.9	3.2	0.00575	37	70
5.5	M3BP	132 SMB	3GBP	131 322-••B	2865	88.0	88.6	88.0	0.86	10.4	7.0	18.3	2.0	2.7	0.01275	68	70
7.5	M3BP	132 SMC	3GBP	131 324- •• B	2890	88.6	88.8	87.5	0.84	14.5	7.3	24.7	2.0	3.6	0.01359	70	70
11	МЗВР	160 MLA	3GBP	161 031-••G	2938	90.7	91.5	91.1	0.91	19.2	7.5	35.7	2.4	3.1	0.044	127	69
15	МЗВР	160 MLB	3GBP	161 036-••G	2934	91.5	92.5	92.2	0.91	26.0	7.5	48.8	2.5	3.3	0.053	141	69
18.5	M3BP	160 MLC	3GBP	161 037-••G	2932	92.0	93.1	93.1	0.92	31.5	7.5	60.2	2.9	3.4	0.063	170	69
22	M3BP	180 MLA	3GBP	181 031-••G	2952	92.2	92.7	92.2	0.87	39.5	7.7	71.1	2.8	3.3	0.076	190	69
30	M3BP	200 MLA	3GBP	201 035-••G	2956	93.1	93.5	92.9	0.90	51.6	7.7	96.9	2.7	3.1	0.178	283	72
37	M3BP	200 MLB	3GBP	201 036-••G	2959	93.4	93.7	93.0	0.90	63.5	8.2	119	3.0	3.3	0.196	298	72
45	M3BP	225 SMA	3GBP	221 031-••G	2961	93.6	93.9	93.1	0.88	78.8	6.7	145	2.5	2.5	0.244	347	74
55	МЗВР	250 SMA	3GBP	251 031-••G	2967	94.1	94.4	93.8	0.88	95.8	6.8	177	2.2	2.7	0.507	405	75
75 ²⁾	M3BP	280 SMA	3GBP	281 210-••G	2978	94.3	94.1	92.8	0.88	130	7.6	240	2.1	3.0	0.8	625	77
90 ²⁾	МЗВР	280 SMB	3GBP	281 220-●•G		94.6	94.5	93.5	0.90	152	7.4	288	2.1	2.9	0.9	665	77
110 ²⁾	M3BP	315 SMA		311 210-●•G		94.9	94.4	92.9	0.86	194	7.6	352	2.0	3.0	1.2	880	78
132 ²⁾	МЗВР	315 SMB		311 220-••G		95.1	94.8	93.6	0.88	227	7.4	422	2.2	3.0	1.4	940	78
160 ²⁾	M3BP	315 SMC	3GBP	311 230-••G		95.4	95.2	94.2	0.89	271	7.5	512	2.3	3.0	1.7	1025	78
200 2)	M3BP	315 MLA	3GBP	311 410-••G	· • · · · · · · · · · · · · · · · · · ·	95.7	95.7	94.9	0.90	335	7.7	640	2.6	3.0	2.1	1190	78
250 ²⁾	M3BP	355 SMA		351 210-••G		95.7	95.5	94.5	0.89	423	7.7	800	2.1	3.3	3.0	1600	83
315 ²⁾	M3BP	355 SMB		351 220-••G		95.7	95.7	95.1	0.89	533	7.0	1009	2.1	3.0	3.4	1680	83
355 ²⁾	M3BP	355 SMC		351 230-••G		95.7	95.7	95.2	0.88	608	7.2 7.1	1136	2.2	3.0	3.6	1750 2000	83
450 ²⁾	M3BP M3BP	355 MLA 355 MLB	3GBP	351 410-••G 351 420-••G		96.9 97.1	96.6 97.0	95.9 96.4	0.88	677 743	7.1	1280 1440	2.3	2.9	4.1	2080	83
500 ²⁾	M3BP	355 LKA	3GBP	351 810-••G		96.9	96.9	96.5	0.90	827	7.5	1601	2.2	3.9	4.8	2320	83
560 ²⁾	M3BP	355 LKA	3GBP	351 820-••G	•••••	97.0	97.0	96.5	0.90	925	8.0	1792	2.2	4.1	5.2	2460	83
560 ³⁾	M3BP	400 LA	3GBP	401 510-••G		97.2	97.2	96.6	0.89	934	7.8	1789	2.1	3.4	7.9	2950	82
560 ³⁾	M3BP	400 LKA	3GBP	401 810-••G		97.2	97.2	96.6	0.89	934	7.8	1789	2.1	3.4	7.9	2950	82
630 ³⁾	M3BP	400 LB	3GBP	401 520-••G		97.4	97.4	96.9	0.89	1048	7.8	2014	2.2	3.4	8.2	3050	82
630 ³⁾	M3BP	400 LKB	3GBP	401 820-••G		97.4	97.4	96.9	0.89		7.8	2014	2.2	3.4	8.2	3050	82
710 ³⁾	M3BP	400 LC	3GBP	401 530-••G		97.5	97.4	97.0	0.89	1180	7.8	2269	2.6	3.4	9.3	3300	82
710 ³⁾		400 LKC	3GBP	401 830-••G		97.5	97.4	97.0	0.89		7.8	2269	2.6	3.4	9.3	3300	82
800 ^{1) 3)}	M3BP	450 LA	3GBP	451 510-••G	•••••	97.2	97.1	96.4	0.88	1349	7.8	2554	1.3	3.2	12.5	4000	85
900 1) 3)	M3BP	450 LB	3GBP	451 520-••G		97.3	97.2	96.6	0.88	1517	7.8	2874	1.5	3.1	14.0	4200	85
1000 ^{1) 3)}	M3BP	450 LC	3GBP	451 530-••G		97.5	97.4	96.9	0.89	1663		3193	1.6	3.2	15.5	4400	85
			50.01			20	2	20.0		. 500		0.00		٠.٢			

¹⁾ Echauffement classe F

Les deux puces (●●) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour commander").

Valeurs de rendement selon IEC 60034-2-1; 2007

²⁾ Réduction de 3dB(A) du niveau de pression sonore avec ventilateur unidirectionnel. Le sens de rotation doit être spécifié à la commande, cf. codes options

³⁾ Ventilateur unidirectionnel en standard. Le sens de rotation doit être spécifié à la commande, cf. codes options 044 et 045.

 $I_s / I_N = courant de démarrage$ C_{i}/C_{N} = couple à rotor bloqué C_b / C_N = couple de décrochage

N.B.: les valeurs ne sont pas comparables sans connaître la méthode de mesure.

IF2

Moteurs Process Performance BT • gamme fonte Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE2 selon IEC 60034-30 ; 2008

								Render IEC 600	nent 034-2-1	2007		Intens	sité	Couple)	_	Moment		Niveau de
Puis kW	sance	Type m	oteur	Code p	roduit		Vitesse tr/min	100 % charge		50 % charge	Facteu puiss. cos φ	r I _N A	I _s	C _N Nm	$\frac{C_l}{C_N}$	$\frac{C_b}{C_N}$	d'inertie J = 1/4 GD ² kgm ²	² Masse kg	pression
300	0 tr/m	nin = 2 p	ôles	400 V 5	50 Hz							Série	puis	sance a	ugme	ntée			
22		МЗВР	160 MLD	3GBP	161 03	4-••G	2933	91.7	92.9	92.9	0.91	38.0	8.1	71.6	3.2	3.6	0.063	170	69
30		M3BP	180 MLB	3GBP	181 03	2-••G	2950	92.8	93.5	93.3	0.88	53.0	7.9	97.1	2.8	3.3	0.092	208	69
30	1)	M3BP	160 MLE	3GBP	161 03	5-••G	2925	91.7	93.1	93.3	0.91	51.8	7.8	97.9	3.1	3.4	0.072	184	69
45		M3BP	200 MLC	3GBP	201 03	3-••G	2957	93.3	93.8	93.2	0.88	79.1	8.1	145	3.1	3.3	0.196	298	72
55		МЗВР	225 SMB	3GBP	221 03	2-••G	2961	93.9	94.3	93.6	0.88	96.0	6.5	177	2.4	2.5	0.274	369	74
55	1)	M3BP	200 MLD	3GBP	201 03	4-••G	2953	93.8	94.5	94.3	0.89	95.0	7.8	177	2.9	3.3	0.217	314	72
75		M3BP	250 SMB	3GBP	251 03	2-••G	2970	94.6	94.9	94.4	0.89	128	7.6	241	2.8	3.1	0.583	451	75
75	1)	M3BP	225 SMC	3GBP	221 03	3-••G	2969	94.5	94.7	94.0	0.84	136	7.4	241	3.2	3.1	0.309	396	74
80	1)	M3BP	225 SMD	3GBP	221 03	4-••G	2964	94.5	94.9	94.3	0.87	140	7.3	257	3.0	2.8	0.329	410	74
90	1)	МЗВР	250 SMC	3GBP	251 03	3-••G	2971	95.0	95.3	95.0	0.89	153	7.6	289	2.5	3.1	0.644	487	75
110	2)	МЗВР	280 SMC	3GBP	281 23	0-••G	2978	95.1	95.0	94.2	0.90	185	7.9	352	2.4	3.0	1.15	725	77
250	2)	M3BP	315 LKA	3GBP	311 810	0-••G	2980	95.7	95.7	95.2	0.89	423	8.1	801	2.8	2.9	2.65	1440	78
315	1) 2)	МЗВР	315 LKC	3GBP	311 83	0-••G	2981	95.7	95.7	95.4	0.89	533	8.8	1009	3.2	3.2	3.30	1630	78

¹⁾ Echauffement classe F

Les deux puces (●●) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour

 $I_s / I_N = courant de démarrage$ $C_{_{I}}/C_{_{N}}$ = couple à rotor bloqué C_b / C_N = couple de décrochage

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B.: les valeurs ne sont pas comparables sans connaître la méthode de mesure.

²⁾ Réduction de -3dB(A) du niveau de pression sonore avec ventilateur unidirectionnel. Le sens de rotation doit être spécifié à la commande, cf. codes options 044 et 045.

³⁾ Ventilateur unidirectionnel en standard. Le sens de rotation doit être spécifié à la commande, cf. codes options 044 et 045.

Moteurs Process Performance BT • gamme fonte Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE2 selon IEC 60034-30 ; 2008

						Render IEC 600	ment 034-2-1	; 2007		Intens	ité	Couple					
Puissance					Vitesse	100 %	75 %	50 %	Facteu puiss.	r I _N	<u> </u> s_	C_N	Cı	Сь	Moment d'inertie J = 1/4 GD ²	Masse	Niveau de pression sonore L
kW	Type m	oteur	Code p	roduit	tr/min		charge		•	Ä	Ī _N	Nm	$\overline{C_N}$	$\overline{C_N}$	kgm²	kg	dB
1500 tr/m			400 V 5									alisée					
0.25		71 MA	3GBP	072 321-••B		68.3	70.8	69.7	0.81	0.7	3.5	1.74	1.9	2.0	0.00074	10	45
0.37		71 MB	3GBP	072 322-••B		72.4	74.5	74.6	0.83	0.9	4.0	2.5	1.6	2.1	0.00088	11	45
0.55		80 MA	3GBP	082 321-••B		74.5	73.8	70.0	0.73	1.5	5.0	3.7	2.0	2.8	0.00144	15	45
0.75 1.1	M3BP M3BP	80 MD 90 SLB	3GBP	082 324-••B 092 322-••B	. .	81.0 83.6	80.7	77.3 83.2	0.73	1.8	5.3	5.0 7.3	2.7	3.2	0.00205 0.0044	17 25	50 50
1.5		90 SLD	3GBP	092 325-••B		84.3	85.6	84.7	0.83	3	6.3	10	2.7	3.4	0.0044	27	56
2.2	M3BP	100 LC	3GBP	102 323-••B		85.9	85.1	83.4	0.78	4.7	6.4	14.4	2.9	3.6	0.00948	36	56
3		100 LD	3GBP	102 324-••B		86.8	87.0	85.4	0.79	6.3	7.7	19.7	2.9	3.4	0.011	38	58
4	.	112 MB	3GBP	112 322-••B	· •	86.8	87.7	87.3	0.81	8.2	7.0	26.5	2.5	2.9	0.0125	44	59
5.5	МЗВР	132 SMB	3GBP	132 322-••B		89.0	89.8	88.9	0.80	11.1	5.9	35.9	1.7	2.4	0.03282	70	67
7.5	МЗВР	132 SMC	3GBP	132 323-••B	1450	89.3	90.1	90.0	0.81	14.9	5.6	49.3	1.6	2.4	0.03659	73	64
11	M3BP	160 MLA	3GBP	162 031- •• G	1466	90.4	91.6	91.3	0.84	20.9	6.8	71.6	2.2	2.8	0.081	135	62
15	МЗВР	160 MLB	3GBP	162 032-••G	1470	91.4	92.4	92.2	0.83	28.5	7.1	97.4	2.6	3.0	0.099	165	62
18.5	МЗВР	180 MLA	3GBP	182 031-••G	1477	91.9	92.9	92.7	0.84	34.5	7.2	119	2.6	2.9	0.166	205	62
22		180 MLB		182 032-••G		92.4	93.3	93.2	0.84	40.9	7.3	142	2.6	3.0	0.195	222	62
30	МЗВР	200 MLA		202 031-••G		93.2	94.0	93.7	0.84	55.3	7.4	193	2.8	3.0	0.309	291	63
37	M3BP	225 SMA		222 031-••G		93.4	93.9	93.4	0.84	68.0	7.1	238	2.6	2.9	0.356	324	66
45	M3BP	225 SMB		222 032-••G	••	93.9	94.3	93.9	0.85	81.3	7.5	290	2.8	3.2	0.44	356	66
55 75	M3BP M3BP	250 SMA 280 SMA		252 031-••G 282 210-••G		94.4	95.0 94.5	94.7	0.85	98.9	7.0 6.9	354 482	2.6	2.9	0.765 1.25	414 625	67 68
90	M3BP	280 SMB		282 220-••G		94.7	94.8	94.4	0.86	159	7.2	579	2.5	2.7	1.5	665	68
110	M3BP	315 SMA		312 210-••G		95.1	95.1	94.3	0.86	194	7.2	706	2.0	2.5	2.3	900	70
132	МЗВР	315 SMB		312 220-••G		95.4	95.4	94.7	0.86	232	7.1	847	2.3	2.7	2.6	960	70
160	МЗВР	315 SMC	3GBP	312 230-●•G	1487	95.6	95.6	95.1	0.85	284	7.2	1027	2.4	2.9	2.9	1000	70
200	МЗВР	315 MLA	3GBP	312 410-••G	1486	95.6	95.6	95.3	0.86	351	7.2	1285	2.5	2.9	3.5	1160	70
250	МЗВР	355 SMA	3GBP	352 210- ●● G	1488	95.9	95.9	95.5	0.86	437	7.1	1604	2.3	2.7	5.9	1610	74
315	МЗВР	355 SMB	3GBP	352 220-••G	1488	95.9	95.9	95.6	0.86	551	7.3	2021	2.3	2.8	6.9	1780	74
355	МЗВР	355 SMC		352 230-••G	1487	95.9	95.9	95.7	0.86	621	6.8	2279	2.4	2.7	7.2	1820	78
400	МЗВР	355 MLA		352 410-●•G		96.3	96.3	95.9	0.85	705	6.8	2565	2.3	2.6	8.4	2140	78
450	МЗВР	355 MLB	3GBP	352 420-••G		96.8	96.8	96.3	0.86	780	6.9	2884	2.3	2.9	8.4		78
500	M3BP	355 LKA	3GBP	352 810-••G		97.0	97.0	96.5	0.86	865	6.8	3204	2.0	3.0	10	*	78
560 ¹⁾	M3BP	355 LKB	3GBP	352 820-••G	• • • • • • • • • • • • • • • • • • • •	96.9	96.9	96.5	0.85	981	7.2	3588	2.6	2.7	10.6	•	78
560 560	M3BP M3BP	400 LA 400 LKA	3GBP 3GBP	402 510-••G 402 810-••G		96.8 96.8	96.8 96.8	96.3 96.3	0.85	982 982	7.4 7.4	3586 3586	2.4	2.8	15 15		78 78
630		400 LRA 400 LB		402 520-••G		97.0	97.0	96.5	0.87			4034			16	3300	
630		400 LKB	3GBP	402 820-••G		97.0	97.0	96.5	0.87	1077		4034	2.2	2.9	16	3300	
710 1)		400 LC	3GBP	402 530-••G		97.1	97.1	96.6	0.86	1227		4547	2.4		17	3400	
710 1)		400 LKC		402 830-••G		97.1	97.1	96.6	0.86	1227		4547			17	3400	
800	.	450 LA	3GBP	452 510- •• G	•••••	96.9	96.9	96.2	0.86	1385			1.3	•	23	4050	•••••
900	МЗВР	450 LB	3GBP	452 520- •• G	1492	97.1	97.1	96.5	0.86	1555			1.3	2.8	25	4350	
1000 1)	МЗВР	450 LC	3GBP	452 530- •• G	1491	97.2	97.2	96.7	0.86	1726	6.8	6404	1.3	2.7	30	4700	85

¹⁾ Echauffement classe F

Les deux puces (●●) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour commander").

 $I_s / I_N = courant de démarrage$ $C_{_{I}}/C_{_{N}}$ = couple à rotor bloqué C_b / C_N = couple de décrochage

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B.: les valeurs ne sont pas comparables sans connaître la méthode de mesure.

IF2

Moteurs Process Performance BT • gamme fonte Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE2 selon IEC 60034-30 ; 2008

								Render IEC 600	nent 034-2-1	; 2007		Intens	sité	Couple)	_	Moment		Niveau de
D:		nce					Vitagoo	100.0/	7E 0/	EO 0/	Facteu	1		0	0	_	d'inertie J = 1/4 GD ²	Magaz	pression
kW	ssa	ince	Type m	oteur	Code p	roduit	Vitesse tr/min	100 % charge		50 % charge	puiss. cos φ	I _N A	I _s	C _N Nm	$\frac{C_l}{C_N}$	$\frac{C_b}{C_N}$	kgm^2	kg	dB
150	00	tr/m	nin = 4 p	ôles	400 V 5	50 Hz						Série	puis	sance a	ugme	ntée			
18.	5		M3BP	160 MLC	3GBP	162 033-••G	1469	91.4	92.5	92.3	0.84	34.7	7.6	120	3.0	3.2	0.11	173	62
22			M3BP	160 MLD	3GBP	162 034- •• G	1463	91.6	93.0	93.2	0.85	40.7	6.9	143	2.5	2.9	0.125	187	62
30	1)		M3BP	180 MLC	3GBP	182 033- •• G	1474	92.3	93.5	93.5	0.83	56.5	7.3	194	2.7	2.9	0.217	235	62
37			M3BP	200 MLB	3GBP	202 032-••G	1479	93.4	94.4	94.4	0.85	67.2	7.1	238	2.6	2.9	0.343	307	63
45	1)		M3BP	200 MLC	3GBP	202 033-••G	1479	93.6	94.4	94.2	0.83	83.6	7.5	290	2.9	3.2	0.366	319	63
55	.		M3BP	225 SMC	3GBP	222 033-••G	1478	94.0	94.7	94.5	0.85	99.3	7.4	355	2.9	3.1	0.474	370	66
73	1)		M3BP	225 SMD	3GBP	222 034-••G	1474	93.6	94.6	94.4	0.85	132	7.1	472	2.9	2.9	0.542	399	66
75	1)		M3BP	250 SMB	3GBP	252 032-••G	1478	94.4	95.1	94.9	0.85	134	7.3	484	2.8	3.1	0.866	450	67
90	1)		M3BP	250 SMC	3GBP	252 033-••G	1478	94.7	95.3	95.0	0.84	163	7.4	581	3.1	3.3	0.941	478	67
110)		МЗВР	280 SMC	3GBP	282 230-••G	1485	95.1	95.2	94.7	0.86	194	7.6	707	3.0	3.0	1.85	725	68
250)		M3BP	315 LKA	3GBP	312 810-••G	1487	95.7	95.8	95.3	0.86	438	7.4	1605	2.5	2.9	4.40	1410	78
280)		МЗВР	315 LKB	3GBP	312 820- •• G	1487	95.8	95.9	95.4	0.87	484	7.6	1798	2.6	3.0	5.00	1520	78
31	5		МЗВР	315 LKC	3GBP	312 830-••G	1488	95.8	95.9	95.3	0.86	551	7.8	2021	2.6	3.2	5.50	1600	78

¹⁾ Echauffement classe F

Les deux puces (●●) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour commander").

 $I_s / I_N = courant de démarrage$ C_{i}/C_{N} = couple à rotor bloqué

C_b / C_N = couple de décrochage

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B. : les valeurs ne sont pas comparables sans connaître la méthode de mesure.

Moteurs Process Performance BT • gamme fonte Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE2 selon IEC 60034-30 ; 2008

						Render IEC 600	ment 034-2-1	; 2007		Intens	ité	Couple					
									Factoria					_	Moment		Niveau de
Puissance					Vitesse	100 %	75 %	50 %	Facteu puiss.	r I _N	<u>l</u> s_	C_N	<u>Cı</u>	Сь	d'inertie $J = 1/4 \text{ GD}^2$	Masse	pression sonore L _{PA}
kW	Type m		Code p		tr/min	charge	charge	charge	cos φ	A	I _N	Nm	$\overline{C_N}$	$\overline{C_N}$	kgm ²	kg	dB
1000 tr/m			400 V !		000	00.7	00.0	50.0	0.74			alisée	0.0	0.1	0.00000	10	40
0.18	M3BP M3BP	71 MA 71 MB	3GBP	073 321-••B 073 322-••B		63.7 67.2	63.8 67.2	59.0 62.6	0.71	0.57	3.1	1.9	2.0	2.1	0.00089	10 12	42 42
0.23	M3BP	80 MA	3GBP	073 322-••B 083 321-••B		71.0	71.1	67.0	0.69	1.09	3.6	3.8	1.8	2.2	0.0011	15	47
0.55	M3BP	80 MB	3GBP	083 322-••B		73.9	75.0	72.8	0.71	1.51	3.8	5.7	1.8	2.2	0.00107	17	47
0.75	M3BP	90 SLC	3GBP	093 323-••B	· •	78.7	77.3	72.5	0.58	2.3	4.5	7.4	2.3	3.1	0.00491	25	44
1.1	МЗВР	90 SLE	3GBP	093 324-••B		78.2	78.6	76.4	0.66	3.0	4.0	11.2	1.9	2.3	0.0054	28	44
1.5	МЗВР	100 L	3GBP	103 322-●●B	950	82.2	82.9	81.6	0.69	3.8	4.0	15	1.5	1.1	0.00873	37	49
2.2	мзвр	112 MB	3GBP	113 322-••B	950	82.5	83.8	81.7	0.69	5.5	4.4	22.1	1.7	2.3	0.0125	44	66
3	МЗВР	132 SMB	3GBP	133 321-••B	975	85.8	84.8	81.9	0.60	8	5.5	29.3	1.7	2.9	0.03336	69	57
4	МЗВР	132 SMB	3GBP	133 322-••B	960	84.9	85.3	83.9	0.68	10.0	4.6	39.7	1.5	2.2	0.03336	69	57
5.5			3GBP	133 324-••B	965	86.1	86.6	85.5	0.71	12.9	5.1	54.4	2.0	2.3	0.0487	86	57
7.5	МЗВР	160 MLA		163 031-••G		88.6	89.9	89.7	0.79	15.4	7.4	73.4	1.7	3.2	0.087	134	59
11	M3BP	160 MLB		163 032-••G	•••••	89.3	90.7	90.6	0.79	22.5	7.5	108	1.9	2.9	0.114	172	59
15	M3BP	180 MLA		183 031-••G		90.5	91.4	91.0	0.77	31.0	6.5	146	1.8	2.8	0.192	221	59
18.5	M3BP			203 031-••G 203 032-••G		91.6	92.3	91.7	0.80	36.4	6.7	178	2.3	2.9	0.382	269	63
30	M3BP M3BP	200 MLB 225 SMA		203 032-••G		92.0 92.7	93.0	92.8 92.9	0.82	42.0 56.2	6.6 7.0	212 290	2.2	2.8	0.448	291 349	63
37	M3BP	250 SMA		253 031-••G		93.1	93.8	93.4	0.82	69.9	6.8	357	2.4	2.9	1.13	395	63
45	M3BP	280 SMA		283 210-••G	· •	93.4	93.6	93.1	0.84	82.7	7.0	434	2.5	2.5	1.85	605	66
55	M3BP	280 SMB		283 220-••G		93.8	94.0	93.3	0.84	100	7.0	530	2.7	2.6	2.2	645	66
75	МЗВР	315 SMA	3GBP	313 210-●•G	992	94.4	94.4	93.5	0.82	139	7.4	721	2.4	2.8	3.2	830	70
90	МЗВР	315 SMB	3GBP	313 220-●●G	992	94.8	94.8	94.2	0.84	163	7.5	866	2.4	2.8	4.1	930	70
110	МЗВР	315 SMC	3GBP	313 230-••G	991	95.0	95.0	94.6	0.83	201	7.4	1059	2.5	2.9	4.9	1000	70
132	МЗВР	315 MLA	3GBP	313 410-●●G	991	95.3	95.4	94.9	0.83	240	7.5	1271	2.7	3.0	5.8	1150	68
160	M3BP	355 SMA	3GBP	353 210-••G	993	95.4	95.4	94.8	0.83	291	7.0	1538	2.0	2.6	7.9	1520	75
200	МЗВР	355 SMB		353 220-●•G		95.7	95.7	95.1	0.84	359	7.2	1923	2.2	2.7	9.7	1680	75
250	M3BP	355 SMC		353 230-••G		95.7	95.7	95.1	0.83	454	7.4	2404	2.6	2.9	11.3	1820	75
315	M3BP	355 MLB	3GBP	353 420-••G		95.7	95.7	95.2	0.83	572	7.0	3032	2.5	2.7	13.5	2180	75 75
355	M3BP	355 LKA	3GBP	353 810-••G		95.7	95.7	95.1	0.83	645	7.6	3417	2.7	2.9	15.5	2500	75 75
400 ¹⁾	M3BP M3BP	355 LKB 400 LA	3GBP	353 820-••G 403 510-••G		96.0 96.2	96.0 96.3	95.5 95.8	0.83	724 731	7.2 7.1	3850 3846	2.6	2.6	16.5 17	2600	75 76
400	M3BP	400 LA 400 LKA	3GBP	403 810-••G	•••••	96.2	96.3	95.8	0.82	731	7.1	3846	2.3	2.7	17	2900	76
450	M3BP	400 LRA	3GBP	403 520-••G		96.6	96.6	96.1	0.82	819	7.4	4323	2.4	2.8	20.5	3150	76
450	M3BP	400 LKB	3GBP	403 820-••G		96.6	96.6	96.1	0.82	819	7.4	4323	2.4	2.8	20.5	3150	76
500	МЗВР	400 LC	3GBP	403 530-••G	993	96.6	96.7	96.2	0.83	900	7.2	4808	2.5	2.7	22	3300	76
500	МЗВР	400 LKC	3GBP	403 830-••G		96.6	96.7	96.2	0.83	900	7.2	4808	2.5	2.7	22	3300	
560	МЗВР	400 LD	3GBP	403 540- •• G	993	96.9	96.9	96.4	0.85	981	7.4	5385	2.4	2.8	24	3400	77
560	МЗВР	400 LKD	3GBP	403 840- •• G	993	96.9	96.9	96.4	0.85	981	7.4	5385	2.4	2.8	24	3400	77
630	МЗВР	450 LA	3GBP	453 510- ●● G	994	96.7	96.8	96.4	0.84	1119	6.5	6052	1.1	2.5	31	4150	81
710		450 LB	3GBP	453 520- •• G		96.9	96.9	96.5	0.85	1244		6814	1.3	2.5	37		81
800 1)	M3BP	450 LC	3GBP	453 530-••G	995	96.9	97.0	96.6	0.84	1418	7.2	7677	1.3	2.7	41	4800	81

¹⁾ Echauffement classe F

Les deux puces (●●) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour

 $I_s / I_N = courant de démarrage$ C_{i}/C_{N} = couple à rotor bloqué C_b / C_N = couple de décrochage

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B. : les valeurs ne sont pas comparables sans connaître la méthode de mesure.

IF2

Moteurs Process Performance BT • gamme fonte Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE2 selon IEC 60034-30 ; 2008

							Render IEC 600	ment 034-2-1	; 2007		Intens	sité	Couple	l	_	.,		N
Puis kW	ssanc	e Type m	oteur	Code p	roduit	Vitesse tr/min	100 % charge		50 % charge	Facteur puiss. cos φ	I _N A	$\frac{I_s}{I_N}$	C _N Nm	$\frac{C_l}{C_N}$	$\frac{C_b}{C_N}$	Moment d'inertie J = 1/4 GD ² kgm ²	² Masse kg	Niveau de pression sonore L _{PA} dB
100	00 tr/	min = 6 p	ôles	400 V	50 Hz						Série	puis	sance a	ugme	ntée			
30	1)	M3BP	200 MLC	3GBP	203 033-••G	985	92.0	93.1	92.9	0.83	56.7	6.9	290	2.3	2.8	0.531	318	63
37		M3BP	225 SMB	3GBP	223 034-••G	985	93.1	94.0	94.0	0.83	69.1	6.6	358	2.3	2.6	0.821	393	63
45		M3BP	250 SMB	3GBP	253 032-••G	989	93.4	94.1	93.9	0.83	83.7	7.0	434	2.5	2.7	1.369	441	63
45	1)	M3BP	225 SMC	3GBP	223 033-••G	984	92.7	93.9	94.0	0.83	84.4	6.4	436	2.3	2.6	0.821	393	63
55	1)	M3BP	250 SMC	3GBP	253 033-••G	988	93.2	94.1	94.0	0.84	101	7.1	531	2.6	2.8	1.50	468	63
75		M3BP	280 SMC	3GBP	283 230-••G	990	94.2	94.5	94.1	0.84	136	7.3	723	2.8	2.7	2.85	725	66
160)	M3BP	315 LKA	3GBP	313 810-●•G	992	95.3	95.3	94.7	0.83	291	7.5	1540	2.6	2.8	7.30	1410	74
180)	M3BP	315 LKB	3GBP	313 820-●•G	992	95.3	95.4	94.8	0.83	328	7.4	1732	2.6	2.8	8.30	1520	74
200)	M3BP	315 LKC	3GBP	313 830-●•G	989	95.4	95.6	95.3	0.85	355	6.8	1931	2.5	2.6	9.20	1600	74

¹⁾ Echauffement classe F

Les deux puces (●●) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour

 $I_s / I_N = courant de démarrage$ $C_1/C_N = \text{couple à rotor bloqué}$

C_b / C_N = couple de décrochage

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B.: les valeurs ne sont pas comparables sans connaître la méthode de mesure.

Moteurs Process Performance BT • gamme fonte Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B

						Render IEC 60	ment 034-2-1	; 2007		Intens	ité	Couple)	_			
Puissance kW	Type m	oteur	Code p	roduit	Vitesse tr/min	100 % charge	75 % charge	50 % charge	Facteu puiss. cos φ	r I _N A	<u>I_s</u>	C _N Nm	$\frac{C_l}{C_N}$	$\frac{C_b}{C_N}$	Moment d'inertie J = 1/4 GD ² kgm ²	Masse kg	Niveau de pression sonore L _{PA} dB
750 tr/mir	1 = 8 pô	les	400 V	50 Hz						Série	norm	alisée					
0.09	M3BP	71 MA	3GBP	074 101-••B	660	49.4	46.0	38.5	0.59	0.44	2.0	1.3	2.4	2.3	0.00089	11	40
0.12	M3BP	71 MB	3GBP	074 102-••B	670	51.4	47.5	39.9	0.56	0.6	2.1	1.71	2.8	2.4	0.0011	12	43
0.18	M3BP	80 MA	3GBP	084 101-••B	685	63.5	62.0	56.3	0.62	0.65	2.8	2.5	1.6	2.0	0.00187	15	45
0.25	M3BP	80 MB	3GBP	084 102-••B	685	67.1	67.2	63.4	0.63	0.85	2.8	3.4	1.4	1.9	0.00187	17	50
0.37	M3BP	90 SLB	3GBP	094 102-••B	705	66.3	64.0	57.1	0.54	1.49	2.8	5.0	1.4	2.2	0.00444	24	50
0.55	M3BP	90 SLC	3GBP	094 103-••B	655	61.8	65.6	65.2	0.67	1.91	2.3	8.0	1.1	1.5	0.00491	25	53
0.75	МЗВР	100 LA	3GBP	104 101-••B	710	74.0	73.0	68.2	0.61	2.3	3.6	10	1.8	2.5	0.0072	30	46
1.1	МЗВР	100 LB	3GBP	104 102-••B	695	76.0	76.5	74.6	0.66	3.1	3.4	15.1	1.7	2.2	0.00871	30	53
1.5	M3BP	112 M	3GBP	114 101-••B	690	74.4	75.9	74.1	0.70	4.1	3.2	20.7	1.4	1.9	0.0106	39	55
2.2	M3BP	132 SMA	3GBP	134 101-••B	715	79.7	80.8	78.7	0.66	6	3.2	29.3	1.1	1.7	0.03336	70	56
3	M3BP	132 SMB		134 102-••B	715	79.9	80.8	79.1	0.64	8.4	3.2	40.0	1.2	1.8	0.04003	75	58
4	M3BP	160 MLA		164 031-••G		84.1	85.1	83.7	0.67	10.2	5.4	52.4	1.5	2.6	0.068	120	59
5.5	M3BP	160 MLB		164 032-●●G		84.7	86.0	84.9	0.67	13.9	5.6	72.3	1.4	2.6	0.085	134	59
7.5	· .	160 MLC	. 	164 033-••G	. .	86.1	87.3	86.6	0.65	19.3	4.7	98.5	1.5	2.8	0.132	184	59
11	M3BP	180 MLA		184 031-••G		86.8	88.4	87.8	0.67	27.3	4.4	143	1.8	2.6	0.214	233	59
15	МЗВР	200 MLA		204 031-••G		90.2	91.3	90.9	0.74	32.4	5.3	194	2.0	2.4	0.45	290	60
18.5	M3BP	225 SMA		224 031-••G		91.0	92.0	91.5	0.73	40.1	5.2	239	2.0	2.3	0.669	350	63
22	МЗВР	225 SMB		224 032-••G		91.6	92.4	92.0	0.74	46.8	5.5	284	2.0	2.3	0.722	363	63
30	МЗВР	250 SMA		254 031-••G		92.4	92.9	92.3	0.71	66.0	5.8	386	2.6	2.4	1.404	440	63
37	МЗВР	280 SMA		284 210-••G		92.7	92.7	91.6	0.78	73.8	7.3	476	1.7	3.0	1.85	605	65
45	M3BP	280 SMB		284 220-••G		93.2	93.2	92.2	0.78	89.3	7.6	579	1.8	3.1	2.2	645	65
55	M3BP	315 SMA		314 210-••G		93.4	93.5	92.7	0.81	104	7.1	707	1.6	2.7	3.2	830	62
75	M3BP	315 SMB		314 220-••G		93.7	93.9	93.4	0.82	140	7.1	966	1.7	2.7	4.1	930	62
90	M3BP	315 SMC	. 	314 230-••G	· •	94.0	94.2	93.6	0.82	168	7.4	1159	1.8	2.7	4.9	•	64
110	M3BP	315 MLA		314 410-••G		94.0	94.3	94.0	0.83	203	7.3	1419	1.8	2.7	5.8		72
132 160	M3BP M3BP	355 SMA 355 SMB		354 210-••G 354 220-••G		94.7	94.7	94.0	0.80	251 303	7.5 7.6	1694 2053	1.5	2.6	7.9 9.7		69 69
•	M3BP	·····	· - · · · · · · · · · · · · · · · · · · ·	·· · ····	•••••	95.2	95.2	94.5	·····	·····	···•······	· • · · · · · · · · · · · · · · · · · ·	1.6		··········	1680	·········
200 250	M3BP	355 SMC 355 MLB	3GBP	354 230-••G 354 420-••G		95.3 95.4	95.4 95.5	94.8 95.0	0.80	378 472	7.4 7.5	2570 3213	1.6	2.6	11.3	1820 2180	69 72
315 ¹⁾			3GBP					95.0	0.80		7.9			2.7	16.5		75
315	M3BP M3BP	355 LKB 400 LA	3GBP	354 820-••G 404 510-••G		95.5 96.1	95.6 96.2	95.8	0.81	595 584	7.9	4053 4043	1.7	2.6	17		71
315	M3BP	400 LKA	3GBP	404 810-••G		96.1	96.2	95.8	0.81	584	7.0	4043	1.2	2.6	17		71
355	M3BP	400 LKA	3GBP	404 510-••G		96.1	96.2	96.1	0.83	641	6.8	4562	1.2	2.5	21		71
355	M3BP	400 LB	3GBP	404 820-••G		96.2	96.3	96.1	0.83	641	6.8	4562	1.2	2.5	21		71
400		400 LC	. 	404 530-••G		96.3		96.0				5134		2.7	······································	3400	••••••
400		400 LKC	3GBP	404 830-••G		96.3	96.4	96.0	0.82	731	7.4	5134	1.3	2.7	24	3400	
450		450 LA	3GBP			96.2	96.4	96.2	0.83	813	6.0		1.0	2.5		3750	
500		450 LB		454 520- ● G		96.3	96.4	96.2	0.83	902		6417		2.6		4000	
560		450 LC		454 530-••G		96.4	96.5	96.1	0.82			7187			35	4350	
630 ¹⁾		450 LD		454 540-••G		96.6	96.6	96.2	0.81				1.3	3.2		4800	
750 tr/mir			400 V		5	55.0	33.0	33.2		_		sance a				.000	
55				284 230-••G	741	93.4	93.5	92.8	0.80	106		708	1.9		2.85	725	65
132		315 LKA		314 810-••G		94.1	94.4	94.2	0.83	243	7.3		1.8		7.3	1410	
150		315 LKB		314 820-••G		94.3	94.6	94.3	0.83	276		1933	1.9	2.7		1520	
160				314 830-••G		94.2	94.6	94.3	0.83	295	7.7	2064	1.9	2.8		1600	
		3.5 2.0	J U.D.	2550		JL	20							0			

¹⁾ Echauffement classe F

Les deux puces (●●) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour commander").

 $I_s / I_N = courant de démarrage$ $C_{_{I}}/C_{_{N}}$ = couple à rotor bloqué

C_b / C_N = couple de décrochage

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B. : les valeurs ne sont pas comparables sans connaître la méthode de mesure.

Moteurs Process Performance BT • gamme fonte Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B

						Render IEC 600	nent 034-2-1	2007		Intens	ité	Couple		_			A.E. I
Puissance kW	Type m	oteur	Code p	roduit	Vitesse tr/min	100 % charge	75 % charge	50 % charge	Facteur puiss. cos φ	I _N	<u> s</u> _N	C _N Nm	$\frac{C_l}{C_N}$	$\frac{C_b}{C_N}$	Moment d'inertie J = 1/4 GD ² kgm ²	Masse kg	Niveau de pression sonore L _{PA} dB
600 tr/mii	n = 10 p	ôles	400 V 5	50 Hz						Série	norm	alisée					
37	МЗВР	280 SMB	3GBP	285 220-••G	593	92.5	92.3	90.9	0.73	79	6.6	595	1.6	3.0	2.2	645	60
45	M3BP	280 SMC	3GBP	285 230-••G	592	93.0	92.9	91.7	0.75	93.1	6.7	725	1.6	2.8	2.85	725	60
55	M3BP	315 SMB	3GBP	315 220-••G	594	93.8	93.8	92.9	0.78	108	6.7	884	1.6	2.7	4.1	930	70
75	M3BP	315 SMC	3GBP	315 230-••G	593	93.6	93.7	92.8	0.78	148	6.6	1207	1.5	2.8	4.9	1000	70
90	M3BP	315 MLA	3GBP	315 410-••G	593	93.7	93.8	93.0	0.78	177	6.6	1449	1.7	2.7	5.8	1150	70
110	МЗВР	355 SMA	3GBP	355 210-••G	595	94.5	94.5	93.6	0.76	221	6.6	1765	1.3	2.5	7.9	1520	73
132	МЗВР	355 SMB	3GBP	355 220- •• G	594	94.8	94.9	94.2	0.79	254	6.6	2122	1.3	2.4	9.7	1680	73
160	МЗВР	355 SMC	3GBP	355 230-••G	594	94.8	94.9	94.2	0.77	316	6.9	2572	1.4	2.5	11.3	1820	76
200	МЗВР	355 MLB	3GBP	355 420-••G	594	95.0	95.1	94.5	0.78	389	6.5	3215	1.4	2.4	13.5	2180	77
250 1)	M3BP	355 LKB	3GBP	355 820-••G	593	95.1	95.3	94.8	0.78	486	6.3	4025	1.4	2.3	16.5	2600	79
250	M3BP	400 LB	3GBP	405 520-••G	595	95.3	95.3	94.5	0.74	511	6.2	4012	1.3	2.3	20	3100	79
250	M3BP	400 LKB	3GBP	405 820-••G	595	95.3	95.3	94.5	0.74	511	6.2	4012	1.3	2.3	20	3100	79
315	МЗВР	400 LC	3GBP	405 530-••G	595	95.4	95.4	94.7	0.74	644	6.2	5055	1.3	2.3	24	3400	79
315	M3BP	400 LKC	3GBP	405 830-••G	595	95.4	95.4	94.7	0.74	644	6.2	5055	1.3	2.3	24	3400	79
355	M3BP	450 LA	3GBP	455 510- •• G	596	95.9	95.9	95.2	0.72	742	5.8	5687	1.1	2.2	31	4050	82
400	МЗВР	450 LB	3GBP	455 520- •• G	596	95.9	95.9	95.1	0.72	836	5.7	6408	1.0	2.1	34	4250	82
450	M3BP	450 LC	3GBP	455 530- •• G	596	96.1	96.1	95.4	0.73	925	5.8	7210	1.0	2.1	38	4550	82
500 ¹⁾	M3BP	450 LD	3GBP	455 540- •• G	596	96.1	96.1	95.4	0.71	1057	5.9	8011	1.1	2.2	42	4800	82
500 tr/mii	n = 12 p	ôles	400 V 5	50 Hz						Série	norm	alisée					
30	МЗВР	280 SMB	3GBP	286 220-••G	493	90.2	89.5	86.9	0.59	81.3	5.8	581	1.9	3.0	2.2	645	71
37	M3BP	280 SMC	3GBP	286 230-••G	493	90.6	89.8	87.2	0.58	101	6.3	716	2.0	3.2	2.85	725	71
45	M3BP	315 SMB	3GBP	316 220-●•G	494	92.8	92.9	92.0	0.76	92	6.5	869	1.6	2.6	4.1	930	71
55	M3BP	315 SMC	3GBP	316 230-●•G	493	93.0	93.2	92.4	0.77	110	6.5	1065	1.6	2.6	4.9	1000	71
75	M3BP	315 MLA	3GBP	316 410-●●G	493	93.2	93.4	92.8	0.76	152	6.3	1452	1.5	2.5	5.8	1150	71
90	M3BP	355 SMA	3GBP	356 210- •• G	495	93.5	93.5	92.5	0.72	192	5.7	1736	1.3	2.4	7.9	1520	75
110	M3BP	355 SMB	3GBP	356 220-●•G	495	93.8	93.8	92.7	0.71	238	6.0	2122	1.4	2.5	9.7	1680	75
132	M3BP	355 SMC	3GBP	356 230- •• G	495	93.9	93.9	92.9	0.71	285	6.0	2546	1.4	2.5	11.3	1820	77
160	M3BP	355 MLB	3GBP	356 420- ●● G	494	93.8	94.0	93.3	0.74	332	5.7	3092	1.3	2.4	13.5	2180	77
200 1)	МЗВР	355 LKB	3GBP	356 820- •• G	494	93.9	94.1	93.4	0.73	421	5.8	3866	1.4	2.4	16.5	2600	79
200	M3BP	400 LB	3GBP	406 520- ● •G	495	95.0	95.0	94.3	0.79	384	5.4	3858	1.1	2.2	20	3100	82
200	M3BP	400 LKB	3GBP	406 820- •• G	495	95.0	95.0	94.3	0.79	384	5.4	3858	1.1	2.2	20	3100	82
250	M3BP	400 LC	3GBP	406 530- •• G	495	95.2	95.2	94.5	0.79	479	5.7	4822	1.1	2.2	24	3400	82
250	M3BP	400 LKC	3GBP	406 830- •• G	495	95.2	95.2	94.5	0.79	479	5.7	4822	1.1	2.2	24	3400	82
315	МЗВР	450 LB	3GBP	456 520- ●● G	496	95.6	95.6	94.8	0.76	625	5.5	6064	1.0	2.1	34	4300	82
355	M3BP	450 LC	3GBP	456 530- ● •G	495	95.6	95.6	95.0	0.76	705	5.3	6848	1.0	2.0	38	4550	82
400 1)	МЗВР	450 LD	3GBP	456 540- •• G	495	95.7	95.8	95.2	0.77	783	5.3	7716	1.0	2.0	42	4800	82

¹⁾ Echauffement classe F

Les deux puces (●●) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour commander").

 $I_s / I_N = courant de démarrage$ $C_{_{I}}/C_{_{N}}$ = couple à rotor bloqué C_b / C_N = couple de décrochage

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B.: les valeurs ne sont pas comparables sans connaître la méthode de mesure.

Moteurs Process Performance BT et Premium BT • gamme fonte Codes options

531 E Équilibra 417 É 423 É 424 É Rouleme 036 B 037 R 039 G 040 G 041 R	ixtension de garantie 2 ans imballage maritime	PPPMMMM	NA NA P P P M M	90 NA NA P P P	NA NA P P	NA NA P P	NA NA P P	R NA P P	R NA	R NA P	225 R NA	250 R NA P	280 M M	M M	355 M M	P P	450 P P
530 E. 531 E Équilibra 417 É 423 É 424 É Rouleme 036 B 037 R 039 G 040 G 041 R	imballage maritime age iquilibrage Grade B (IEC 60034-14) iquilibrage sans clavette iquilibrage clavette entière ents et lubrification Blocage rotor pour le transport aculement à rouleaux C.C. Graisse basse température Graisse haute température doulements avec graisseurs	P P P M M M	P P P M P	P P P M	NA P P	NA P P	NA P P	NA P	NA P	NA	NA	NA	М	M P	M P	P	
531 E Équilibra 417 É 423 É 424 É Rouleme 036 B 037 R 039 G 040 G 041 R	imballage maritime age iquilibrage Grade B (IEC 60034-14) iquilibrage sans clavette iquilibrage clavette entière ents et lubrification Blocage rotor pour le transport aculement à rouleaux C.C. Graisse basse température Graisse haute température doulements avec graisseurs	P P P M M M	P P P M P	P P P M	NA P P	NA P P	NA P P	NA P	NA P	NA	NA	NA	М	M P	M P	P	
Équilibra 417 É 423 É 424 É Rouleme 036 B 037 R 039 G 040 G 041 R	quilibrage Grade B (IEC 60034-14) quilibrage sans clavette quilibrage clavette entière ents et lubrification Blocage rotor pour le transport doulement à rouleaux C.C. Graisse basse température Graisse haute température doulements avec graisseurs	P P P M P	P P P M	P P P	P P	P P	P P	Р	Р					Р	Р	R	Р
417 É 423 É 424 É Rouleme 036 B 037 R 039 G 040 G	quilibrage Grade B (IEC 60034-14) quilibrage sans clavette quilibrage clavette entière ents et lubrification Blocage rotor pour le transport doulement à rouleaux C.C. Graisse basse température draisse haute température doulements avec graisseurs	P P M P M	P P M P	P P M	Р	Р	Р			Р	Р	Р	Р				
423 É 424 É Rouleme 036 B 037 R 039 G 040 G	quilibrage sans clavette quilibrage clavette entière ents et lubrification flocage rotor pour le transport doulement à rouleaux C.C. fraisse basse température fraisse haute température doulements avec graisseurs	P P M P M	P P M P	P P M	Р	Р	Р			Р	Р	Р	Р				
424 É Rouleme 036 B 037 R 039 G 040 G 041 R	iquilibrage clavette entière ents et lubrification elocage rotor pour le transport doulement à rouleaux C.C. Graisse basse température Graisse haute température doulements avec graisseurs	P M P M	P M P	P	•	•	•	Р	_					_	П	_	R
Rouleme 036 B 037 R 039 G 040 G 041 R	cents et lubrification Blocage rotor pour le transport Blocage r	M P M	M P	М	Р	Р			Р	Р	Р	Р	Р	Р	Р	Р	Р
036 B 037 R 039 G 040 G	Blocage rotor pour le transport coulement à rouleaux C.C. Graisse basse température Graisse haute température coulements avec graisseurs	P M	Р				Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
037 R 039 G 040 G 041 R	doulement à rouleaux C.C. Graisse basse température Graisse haute température doulements avec graisseurs	P M	Р														
039 G 040 G 041 R	raisse basse température Graisse haute température doulements avec graisseurs	M			М	М	М	М	М	М	М	М	М	М	М	Р	Р
040 G 041 R	raisse haute température doulements avec graisseurs		M	Р	Р	Р	Р	М	М	М	М	М	М	М	М	P	P
041 R	oulements avec graisseurs	M		M	М	М	М	NA	NA	NA	NA	NA	М	M	M	Р	Р
	<u> </u>	_	M	M	M	M	M	NA	NA	NA	NA	NA	M	M	M	Р	Р
043 P		Р	М	М	М	М	М	S	S	S	S	S	S	S	S	S	S
057 D	, ,	Р	Р	Р	Р	Р	Р	S	S	S	S	S	S	S	S	S	S
	doulements 2RS C.C. et C.O.C	M	M	M	M	M	M	M	M	M	M	M	NA P	NA P	NA P	NA P	NA P
cl	loulement à billes à contact oblique C.C., harge sur l'arbre à l'opposé du palier ; locage rotor pour le transport inclus	М	М	М	М	М	М	М	М	М	М	М	Р	Р	Р	Р	Р
cl	toulement à billes à contact oblique C.O.C., harge sur l'arbre vers palier ; locage rotor pour le transport inclus	Р	Р	Р	Р	Р	Р	R	R	R	R	R	Р	Р	Р	Р	Р
060 R cl	toulement à billes à contact oblique C.C., harge sur l'arbre vers palier ; blocage rotor our le transport inclus	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
cl	toulement à billes à contact oblique C.O.C., harge sur l'arbre à l'opposé du palier ; locage rotor pour le transport inclus	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
107 S	onde PT100 dans palier (2 fils)	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р	М	М	М	Р	Р
128 D	ouble sonde PT100 dans palier (2 fils)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	Р	Р
129 D	ouble sonde PT100 dans palier (3 fils)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	Р	Р
130 S	onde PT100 dans palier (3 fils)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	Р	Р
	oulements série 63	М	М	М	М	М	М	S	S	S	S	S	S	S	S	S	S
	Roulements 2Z graissés à vie C.C. et C.O.C.	NA	NA	NA	NA	NA	NA	M	M	M	M	M	NA -	NA -	NA -	NA -	NA -
	ondes PTC dans palier	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
433 D	lévidoir à graisse avec pompe manuelle	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
M	rises pour mesure des vibrations : pointe SKF Marlin Quick Connect CMSS-2600-3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	P	Р	P	P	P
654 P	rovision pour capteurs de vibrations (M8 x 1)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
796 G	Graisseurs JIS B 1575 PT 1/8 Type A	NA	NA	NA	NA	NA	NA	М	M	М	М	М	М	М	M	Р	Р
797 P	rises pour capteur de vibration (SPM) en inox	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М	М	М	Р	Р
798 G	araisseurs en acier inoxydable	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М	М	М	Р	Р
799 G	Graisseurs plats type DIN 3404, filetage M10x1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	Р	Р
800 G	Graisseurs JIS B 1575 PT broche 1/8"	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	Р	Р
Freins		•	•	•	•	•			•	•		•				-	
	rein incorporé	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р	Р	Р	P	R
	ons diverses	, .	,		, .	, (••		•			•		•	•
	Connexion Manilla de l'enroulement	NA	NA	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	NA	NA	NA
	isserie acier inoxydable / résistance aux acides	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
204 É	crous de fixation (Jacking bolts) our moteurs à pattes	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	S	S	S
209 Te	ension ou fréq. non standard (bobinage spécial)	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р

Code	Option	Hau	teur d	axe													
		71	80	90	100	112	132	160	180	200	225	250	280	315	355	400	450
396	Exécution pour température ambiante -20 °C à -40 °C, avec résistances de chauffage (code 450/451 à ajouter)	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р	Р	Р	Р	Р
397	Exécution pour température ambiante -40 °C à -55 °C, avec résistances de chauffage (code 450/451 à ajouter)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
398	Exécution pour température ambiante -20 °C à -40 °C, sans résistances de chauffage	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р	Ρ	Р	Р	Ρ
399	Exécution pour température ambiante -40 °C à -55 °C, sans résistances de chauffage	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
419	Exécution industrie textile	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	NA	NA	NA
425	Protection anticorrosion stator et rotor	М	М	М	М	М	М	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
443	Rotor spécial pour alimentation par convertisseur à composants de puissance GTO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	R	NA
785	Tropicalisation renforcée	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р	NA	NA	NA	NA	NA
Systè	me de refroidissement																
044	Ventilateur unidirectionnel pour niveau de bruit réduit, rotation sens horaire vue C.C. Uniquement pour moteurs 2 pôles	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	R	R
045	Ventilateur unidirectionnel pour niveau de bruit réduit, rotation sens anti-horaire vue C.C. Uniquement pour moteurs 2 pôles	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	R	R
068	Ventilateur métallique (alliage léger) : obligatoire pour températures ambiantes ≥ 60°C	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
075	Mode de refroidissement IC 418 (sans ventilateur)	Р	Р	Р	Р	Р	Р	М	M	М	М	М	Р	Р	Р	Р	Р
183	Ventilation forcée (ventilateur axial, C.O.C)	R	R	Р	Р	Р	Р	M	M	М	М	М	М	М	Р	Р	Р
189	Ventilation forcée, IP44, 400V, 50Hz (ventilateur axial, C.O.C)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
206	Ventilateur en acier	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	NA
422	Ventilation forcée (ventilateur sur le dessus ou le côté, C.O.C.)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
791	Capot ventilateur en acier inoxydable	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р	Р	Р	Р	Р
793	Ventilateur pour niveau de bruit réduit (ventilateur 2 pôles)	NA	NA	NA	NA	NA	NA	R	R	R	R	R	NA	NA	NA	NA	NA
794	Ventilateur pour niveau de bruit réduit (ventilateur 4 pôles)	NA	NA	NA	NA	NA	NA	R	R	R	R	R	NA	NA	NA	NA	NA
Accou	plement																
035	Montage demi-accouplement fourni par le client (alésage fini et équilibré)	NA	NA	NA 	NA	NA	NA	R	R	R	R	R	Р	Р	Р	Р	Р
	na d'encombrement																
141	Schéma d'encombrement contractuel	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
	de purge																
065	Trous de purge existants obturés	M	М	М	M	M	M	M	M	М	M	М	M	M	M	P _	P
448	Trous de purge avec bouchons métalliques	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
	s de masse									0	0	-					
067	Borne de masse extérieure	М	М	М	М	М	М	S	S	S	S	S	S	S	S	S	S
452	DIP/Ex tD selon directive ATEX 94/9/EC, T= 125 °C, cat. 3D, IP55	М	М	М	М	М	М	М	М	М	М	М	М	М	М	NA	NA
453	DIP/Ex tD selon directive ATEX 94/9/EC, T= 125 °C, cat. 2D, IP65	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	NA	NA
454	DIP/Ex tD selon directive ATEX 94/9/EC, T= 125 °C, cat. 3D, IP65	NA	NA	NA	NA	NA	NA	R	R	R	R	R	R	R	R	NA	NA
Résist	ances de réchauffage																
450	Résistance de réchauffage, 100-120 V	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
451	Résistance de réchauffage, 200-240 V	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
Systè	me d'isolation																
014	Isolation classe H des bobinages	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р

S = Inclus en standard

 Commande spécifique en fabrication uniquement M = Avec modification d'un moteur en stock ou par commande spécifique en fabrication, le nombre par commande peut être limité

Code	Option	Hauf	teur d	ave													
Couc	Option	71	80	90	100	112	132	160	180	200	225	250	280	315	355	400	450
405	Isolation spéciale des bobinages pour alimentation par variateur de frég., tension nominale > 500 V	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
406	Bobinage spécial pour tension d'alimentation > 690 ≤ 1000 V	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р	Р	Р	Р
Exécu	ition Marine																
	Cf. catalogue "Moteurs exécution Marine"																
Forme	es de montage																
800	IM 2101 à pattes/bride trous taraudés (normalisée IEC), à partir de IM 1001 (B34 à partir de B3 en stock)	М	М	М	М	М	М	NA									
009	IM 2001 à pattes/bride trous lisses (normalisée IEC), à partir de IM 1001 (B35 à partir de B3 en stock)	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Ρ
047	IM 3601 à bride trous taraudés (normalisée IEC), à partir de IM 3001 (B14 à partir de B5 en stock)	М	М	М	М	М	М	NA									
066	Modification pour position de montage non standard (spécifier IM xxxx), (à commander pour toutes les formes de montage, à l'exclusion de IM B3 (1001), IM B5 (3001), IM B35 (2001), B34 (2101) & B14 (3601)	M	М	М	М	M	M	M	M	M	M	M	M	M	M	Р	Р
304	Fixation selon BS4999-141	NA	NA	NA	NA	NA	NA	R	R	R	R	R	R	R	NA	NA	NA
305	Anneaux de levage supplémentaires pour V1, V3, V5, V6, V15 et V36	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Ρ	Ρ	Ρ	Ρ	Ρ
Rédu	ction du niveau de bruit																
055	Capot anti-bruit	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
Peintu	ure																
114	Peinture de couleur spéciale, nuance AFNOR (RAL à indiquer)	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
115	Peinture (zinguée) 200 microns pour l'offshore	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р	Р	Р	Р	Р
168	Couche primaire uniquement	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
179	Peinture aux spécifications spéciales	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
754	Système de peinture C5M selon ISO 12944- 5:2007	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р	Р	Р	Р	Р
755	Peinture zinguée et époxy pour l'offshore (uniquement teinte bleue, Munsell 8B 4.5/3.25)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ρ	Ρ	Р	Ρ	Ρ
Prote	ction																
005	Capot de protection pour marche verticale bout d'arbre vers le bas	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
072	Etanchéité par joint radial C.C.	М	М	М	М	М	М	М	М	М	М	М	Μ	Μ	Р	Р	Ρ
073	Etanchéité à l'huile C.C.	R	R	R	R	R	R	М	М	М	М	М	Р	Р	Р	Р	Р
158	Degré de protection IP 65	М	М	М	М	М	М	М	М	М	М	М	M	M	М	Р	Р
211	Protection contre les intempéries, IP xx W	М	М	М	М	М	М	М	М	М	М	М	NA	NA	NA	NA	NA
401	Capot de protection pour marche horizontale	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Ρ	Р	Ρ
403	Degré de protection IP 56	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
404	Degré de protection IP 56, sans ventilateur ni capot de ventilateur. Puissance sur demande	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р	R	R	R	NA	NA
434	Degré de protection IP56 (pour pont ouvert)	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р	Р	Р	Р	R
783	Etanchéité par joint labyrinthe C.C. (Standard 280-355, 2 pôles)	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Ρ	Ρ	S	S	S
784	Etanchéité par joint Gamma C.C.	М	М	М	М	М	М	S	S	S	S	S	NA	NA	NA	NA	NA
Plaqu	es signalétiques																
002	Retimbrage pour tension, fréquence et puissance, service continu ; toutes les valeurs doivent être spécifiées à la commande.	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
004	Texte ajouté sur plaque signalétique standard (maxi 12 caractères sur ligne libre)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М	М	М	Р	Р
095	Retimbrage pour puissance (tension et fréquence conservées), service intermittent ; toutes les valeurs doivent être spécifiées à la commande.	М	М	М	М	М	М	М	М	М	М	М	Р	Р	Р	Р	Р

S = Inclus en standard

⁼ Commande spécifique en fabrication uniquement

M = Avec modification d'un moteur en stock ou par commande spécifique en fabrication, le nombre par commande peut être limité

Codo	Option	Hauf	teur d'	aye													
Code	Орион	71	eur a 80	90	100	112	132	160	180	200	225	250	280	315	355	400	450
126	Plaque amovible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
135	Montage plaque d'identification supplémentaire, inox	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
138	Montage plaque d'identification supplémentaire, aluminum	М	М	М	М	М	М	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
139	Plaque d'identification supplémentaire livrée non montée	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
159	Plaque supplémentaire avec «fabriqué à» gravé	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
160	Fixation plaque signalétique supplémentaire	М	M	М	М	М	М	M	М	М	M	М	М	М	М	Р	Р
161	Plaque signalétique supplémentaire non montée	М	М	М	М	М	М	M	М	М	М	M	М	М	М	Р	Р
163	Plaque signalétique variateur de fréquence supplémentaire ; toutes les valeurs doivent être spécifiées à la commande.	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
Arbre	et rotor		_														
069	Arbre à deux bouts selon catalogue, en matière standard	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
070	Un ou deux bouts d'arbre spéciaux, en matière standard	R	R	R	R	R	R	R	R	R	R	R	Р	Р	Р	Р	Р
131	Moteur fourni avec demi-clavette (clavette inférieure au diamètre de l'arbre)	М	М	М	М	М	М	М	М	М	М	М	NA	NA	NA	NA	NA
164	Bout d'arbre avec rainure de clavette fermée	NA	NA	NA	NA	NA	NA	S	S	S	S	S	Р	Р	Р	Р	R
165	Bout d'arbre avec rainure de clavette débouchante	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р	S	S	S	S	S
410	Arbre en acier inox/résistant aux acides (exécution standard ou non standard)	Р	Р	Р	Р	Р	Р	R	R	R	R	R	Р	Р	Р	Р	P
	es et réglementations	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA		Р		P	-
010	Exécution suivant normes CSA avec certificat Exécution rendement énergétique suivant normes	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA R	NA R	NA R	NA R	NA R	P P	P	P NA	NA	P NA
151	CSA (code 010 inclus) Exécution SHELL DEP 33.66.05.31 - Exécution	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	Р	Р	P	P	NA
331	gén. juin 2007 Exécution IE1 pour utilisation hors CE	NA	M	M	M	M	M	M	M	M	M	M	М	М	М	NA	NA
421	Execution VIK (Verband der Industriellen Energie-	NA	NA	P	P	Р	P	NA	NA	NA	NA	NA	Р	P	P	P	NA
721	und Kraftwirtschaft e.V.)	14/ (14/ (•	'	•	•	147 (14/ (14/ (14/ (147 (•		14/ (
500	Exécution label de rendement énergétique Corée	NA	NA	NA	NA	NA	NA	R	R	R	R	R	М	М	М	NA	NA
505	Exécution VIK avec dimensions standard arbre ABB (Verband der Industriellen Energie- und Kraftwirtschaft e.V.)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	NA	NA
540	Exécution label de rendement énergétique Chine	NA	NA	NA	NA	NA	NA	R	R	R	R	R	М	М	М	NA	NA
542	Design NBR Brésil	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	NA	NA	NA
756	Exécution EDF (Electricité de France), zone non classifiée	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
757	Exécution EDF (Electricité de France), zone E1 K3	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
775	Exécution SHELL DEP 33.66.05.31 - Exécution gén. janvier 1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	Р	Р	NA
778	Certification export/import GOST R (Russie)	NA	NA	NA	NA	NA	NA	M	М	M	M	M	М	М	M	Р	Р
779	Certification export/import SASO (Arabie Saoudite)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	M	M	М	Р	Р
802 Sonde	Certification GOST (Kazakhstan) es thermiques dans bobinage stator	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
120	Sondes KTY 84-130 (1 par phase) dans bobinage stator	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р	Р	Р	Р	Р
121	Sondes bilame à ouverture (3 en série), 130 °C, dans bobinage stator	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
122	Sondes bilame à ouverture (3 en série), 150 °C, dans bobinage stator	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
123	Sondes bilame à ouverture (3 en série), 170 °C, dans bobinage stator	NA	NA	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
124	Sondes bilame à ouverture (2x3 en série), 140 °C, dans bobinage stator	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М	М	М	Р	Р
125	Sondes bilame à ouverture (2x3 en série), 150 °C, dans bobinage stator	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Р	Р
127	Sondes bilame à ouverture (3 en série, 130 °C et 3 en série, 150 °C) ; dans bobinage stator	NA	NA	М	М	М	М	М	М	М	М	М	Р	Р	Р	Р	Р

S = Inclus en standard

P = Commande spécifique en fabrication uniquement

M = Avec modification d'un moteur en stock ou par commande spécifique en fabrication, le nombre par commande peut être limité

Code	Option	Haut	teur d'	axe													
	opus.	71	80	90	100	112	132	160	180	200	225	250	280	315	355	400	450
435	Sondes PTC (3 en série), 130 °C, dans bobinage stator	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
436	Sondes PTC (3 en série), 150 °C, dans bobinage stator	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
437	Sondes PTC (3 en série), 170 °C, dans bobinage stator	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
438	Sondes PTC (3 en série), 190 °C, dans bobinage stator	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
439	Sondes PTC (2x3 en série), 150 °C, dans bobinage stator	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
441	Sondes PTC (3 en série, 130 °C et 3 en série, 150 °C, dans bobinage stator	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
442	Sondes PTC (3 en série, 150°C et 3 en série, 170°C, dans bobinage stator	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
445	Sondes PT100 (1/phase) dans bobinage stator (2 fils)	Р	Р	Р	Р	Р	Р	М	М	М	М	М	М	М	М	Р	Р
446	Sondes PT100 (2/phase) dans bobinage stator (2 fils)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М	М	М	Р	Р
502	Sondes PT100 (1/phase) dans bobinage stator (3 fils).	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	Р	Р
503	Sondes PT100 (2/phase) dans bobinage stator (3 fils).	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	Р	Р
Boîte	à bornes																
015	Moteur en couplage Δ ; uniquement moteur monovitesse	М	М	М	М	М	М	М	М	М	М	М	NA	NA	NA	NA	NA
017	Moteur en couplage Y; uniquement moteur monovitesse	NA	NA	М	М	М	М	М	М	М	М	М	NA	NA	NA	NA	NA
019	Boîte à bornes de taille supérieure au format standard	М	М	М	М	М	М	NA	NA	NA	NA	NA	Р	Р	Р	Р	NA
020	Boîte à bornes détachée	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
021	Boîte à bornes sur le côté gauche (vue C.C.)	NA	NA	М	М	М	М	Р	Р	Р	Р	Р	Р	Р	Р	Р	NA
022	Entrée de câbles sur le côté gauche (vue C.C.)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М	М	М	Р	Р
157	Boîte à bornes degré de protection IP 65	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М	М	М	Р	NA
180	Boîte à bornes sur le côté droit (vue C.C.)	NA	NA	М	М	М	М	Р	Р	Р	Р	Р	Р	Р	Р	Р	NA
230	Presse-étoupes standards	М	М	М	М	М	М	М	М	М	М	М	S	S	S	S	S
231	Presse-étoupes standards avec collier d'amarrage	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
277	Boîte de jonction, petit format pour ouverture C	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	NA	NA	NA	NA
278	Boîte de jonction, format moyen pour ouverture D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ρ	Р	Р	Р
279	Boîte de jonction, grand format pour ouverture D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р
292	Adaptateur C-C	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	NA	NA	NA	NA
293	Adaptateur D-D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	NA	NA
294	Adaptateur E-D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	NA
295	Adaptateur E-2D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	S
296	Adaptateur E-3D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р
375	Presse-étoupes standard (plastique)	М	М	М	М	М	М	NA									
380	Boîte à bornes séparée pour sondes thermiques, matériau standard	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Р	Р
400	Boîte à bornes orientable toutes directions (4 x 90°)	NA	NA	NA	NA	NA	NA	S	S	S	S	S	S	S	S	NA	NA
409	Boîte à bornes de grande taille avec deux borniers	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	NA	NA	NA
413	Sortie de câble sans boîte à bornes	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
418	Boîte à bornes séparée pour auxiliaires, matière standard	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Р	Р
444	Adaptateur E-2E	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р
447	Boîte à bornes séparée montée sur le dessus pour dispositif de surveillance	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	NA	NA
466	Boîte à bornes côté opposé commande (C.O.C.)	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р	Р	Р	Р	Р

S = Inclus en standard

⁼ Commande spécifique en fabrication uniquement

M = Avec modification d'un moteur en stock ou par commande spécifique en fabrication, le nombre par commande peut être limité

Code	Option	Haut	teur d'	axe													
		71	80	90	100	112	132	160	180	200	225	250	280	315	355	400	450
467	Boîte à bornes plus basse que format standard ; câble de 2 m inclus	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р	NA	NA	NA	NA	NA
468	Entrée de câbles côté commande (C.C.)	М	М	М	М	М	М	R	R	R	R	R	М	М	Р	Р	NA
469	Entrée de câbles côté opposé commande (C.O.C.)	М	М	М	М	М	М	М	М	М	М	М	Р	Р	Р	Р	NA
567	Boîte à bornes séparée en fonte	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
568	Boîte à bornes séparée pour résistances de réchauffage, matière standard	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
569	Boîte à bornes séparée pour frein	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
729	Plaque d'entrée de câble non percée en aluminium pour presse-étoupes	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М	М	М	Р	Р
730	Exécution pour presse-étoupes au pas NPT	М	М	М	М	М	М	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
731	Deux presse-étoupes standards	M	М	М	М	M	М	М	М	М	М	М	S	S	S	S	S
732	Presse-étoupe standard, Ex d IIB, câble armé	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
740	Exécution pour presse-étoupes au pas PG	NA	NA	NA	NA	NA	NA	М	М	М	M	М	NA	NA	NA	NA	NA
742	Capot de protection pour bornier accessoire dans boîte à bornes principale	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	Р	Р
743	Plaque d'entrée de câble en acier peint pour presse-étoupes ; non perçée	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	Р	Р
744	Plaque d'entrée de câble en inox pour presse- étoupes ; non perçée	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	Р	Р
745	Plaque d'entrée de câble en acier peint avec presse-étoupes en laiton nickelé	NA	NA	NA	NA	NA	NA	R	R	R	R	R	М	М	М	Р	Р
746	Plaque d'entrée de câble en inox avec presse- étoupes standard en laiton nickelé	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р	Р	Р	Р	Р
Essais	•																
140	Confirmation d'essais	М	М	М	М	M	М	М	М	М	М	М	NA	NA	NA	NA	NA
145	Certificat d'essai de type sur moteur identique ; 400 V 50 Hz	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
146	Certificat d'essai de type sur un moteur de la commande	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Р	Р
147	Certificat d'essai de type sur un moteur de la commande, essai en présence du client	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
148	Certificat d'essais de fin de chaîne ; 400 V 50 Hz	M	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
150	Essais en présence du client. Procédure d'essai à spécifier avec autres codes	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
153	Essais réduits pour organisme d'agrément	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
221	Essai de type et essai en charge multipoint avec certificat sur un moteur de la commande	NA	NA	NA	NA	NA	NA	М	М	М	М	М	R	R	R	R	R
222	Courbe couple/vitesse, essai de type et essai en charge multipoint avec certificat sur un moteur de la commande	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Р	Р
760	Essai vibratoire	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М	М	М	Р	Р
761	Essai vibratoire avec spectre sur un moteur de la commande	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
762	Essai du niveau de bruit sur un moteur de la commande	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Р	Р
763	Essai du niveau de bruit (avec spectre) sur un moteur de la commande	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
764	Essais complets sur un moteur de la commande avec variateur de fréquence ABB, en usine ABB, procédure d'essai standard ABB	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
Monta	ge codeurs incrémentaux (codeur non compr	is)		-													
062	Dynamo tachymétrique	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
182	Codeur à impulsions monté comme spécifié	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
429	Ventilation forcée (ventil. sur le dessus, C.O.C. et codeur à impuls.1024 (Leine & Linde 861) monté	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р

S = Inclus en standard

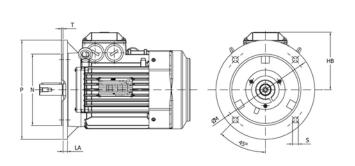
P = Commande spécifique en fabrication uniquement

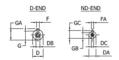
 M = Avec modification d'un moteur en stock ou par commande spécifique en fabrication, le nombre par commande peut être limité

Code	Option	Haut	teur d'	axe													
		71	80	90	100	112	132	160	180	200	225	250	280	315	355	400	450
470	Moteur préparé pour codeur à impuls. à arbre creux (équivalent Leine&Linde)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Р	Р
472	Codeur à impulsions 1024 points à arbre creux (équivalent L&L) monté	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Р	Р
473	Codeur à impulsions 2048 points à arbre creux (équivalent L&L) monté	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Р	Р
474	Ventilation forcée (ventil. axial, C.O.C.) et moteur préparé pour codeur à impulsions à arbre creux (équivalent Leine&Linde)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Р	Р
476	Ventilation forcée (ventil. axial,C.O.C.) et codeur à impuls. 1024 points (équivalent L&L) monté	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Ρ	Р
477	Ventilation forcée (ventil. axial, C.O.C.) et codeur à impuls. 2048 points (équivalent L&L) monté	NA	NA	NA	NA	NA	NA	М	М	М	М	М	Р	Р	Р	Р	Р
478	Ventilation forcée (ventilateur sur le dessus, C.O.C.) et moteur préparé pour codeur à impulsions à arbre creux (équivalent Leine&Linde)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
479	Montage d'autres types de capteur avec bout d'arbre (capteur non fourni)	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р	Р	Р	Р	Р
486	Ventilation forcée (ventilateur sur le dessus, C.O.C.) et moteur préparé pour tachy C.C.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Ρ	Р
510	Ventilation forcée (ventil. sur le dessus, C.O.C. et codeur à impuls. 2048 (Leine & Linde 861) monté	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
570	Moteur préparé pour codeur à impulsions à arbre creux (L&L 503)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
572	Codeur à impulsions 1024 points (L&L 503)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
573	Codeur à impulsions 2048 points (L&L 503)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
574	Ventilation forcée (ventilateur axial, C.O.C.) et moteur préparé pour codeur à impulsions à arbre creux (L&L 503)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
576	Ventilation forcée (ventil. axial, C.O.C.) et codeur à imp. 1024 pts (L&L 503)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
577	Ventilation forcée (ventil. axial, C.O.C.) et codeur à imp. 2048 pts (L&L 503)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
578	Ventilation forcée, IP 44, 400 V, 50 Hz (ventilateur axial, C.O.C.) et moteur préparé pour codeur à impulsion à arbre creux (L&L 503)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
580	Ventilation forcée, IP44, 400V, 50Hz (ventil. axial, C.O.C.) et codeur à impuls. 1024 points (L&L 503)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
581	Ventilation forcée, IP44, 400V, 50Hz (ventil. axial, C.O.C.) et codeur à impuls. 2048 points (L&L 503)	NA	NA	NA	NA	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA
582	Codeur à impulsions 1024, GHK912-GBR-1024, BEI IDEACOD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
583	Codeur à impulsions 2048, GHK912-GBR-2048, BEI IDEACOD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р
701	Roulement isolé C.O.C.	NA	NA	NA	NA	NA	NA	Р	Р	М	М	М	М	М	М	Р	Р
704	Presse-étoupes CEM	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Р	Р
Déma	rrage Y/∆																
	Bornes pour démarrage Y/ Δ aux deux vitesses (enroulements bi-vitesse)	NA	NA	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	R	R	R
	Bornes pour démarrage Y/ Δ à grande vitesse (enroulements bi-vitesse)	NA	NA	Р	Ρ	Ρ	Ρ	NA	NA	NA	NA	NA	Ρ	Р	R	R	R
	Bornes pour démarrage Y/Δ à petite vitesse (enroulements bi-vitesse)	NA	NA	М	М	М	М	NA	NA	NA	NA	NA	Р	Р	R	R	R

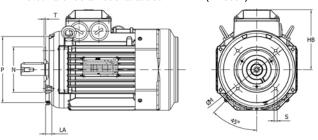
S = Inclus en standard

⁼ Commande spécifique en fabrication uniquement


M = Avec modification d'un moteur en stock ou par commande spécifique en fabrication, le nombre par commande peut être limité


Moteurs Process Performance BT et Premium BT • gamme fonte Hauteurs d'axe 71-132

Schémas d'encombrement


Moteur à pattes : IM B3 (IM 1001), IM 1002

Moteur à bride à trous lisses : IM B5 (IM 3001), IM 3002

M B3 (IM 1001), IM 1002

Hauteu	ır A	AA	AB	AC	AE	AF	В	ВА	BB	ВС	С	CA	CB	D-Tol.	DA	DB	DC	Е	EA	EG	EH
d'axe																					
71	112	24	136	139	105	139	90	24	110	24	45	104	10	14-j6	11	M5	M4	30	23	12.5	10
80	125	28	154	157	105	157	100	28	125	28	50	136	12.5	19-j6	14	M6	M5	40	30	16	12.5
90S	140	30	170	177	118	177	100	30	150	55	56	156	12.5	24-j6	14	M8	M5	50	30	19	12.5
90L	140	30	170	177	118	177	125	30	150	55	56	131	12.5	24-j6	14	M8	M5	50	30	19	12.5
100	160	38	200	197	118	197	140	34	172	34	63	123	16	28-j6	19	M10	M6	60	40	22	16
112	190	41	230	197	118	197	140	34	172	34	70	138	16	28-j6	19	M10	M6	60	40	22	16
132S	216	47	262	268.5	169	261	140	40	212	76	89	228	16	38-k6	24	M12	M8	80	50	28	19
132M	216	47	262	268.5	169	261	178	40	212	76	89	190	16	38-k6	24	M12	M8	80	50	28	19

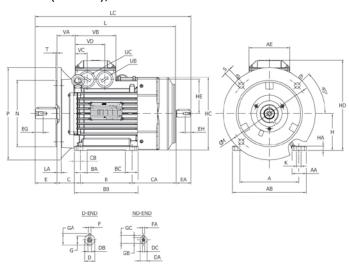
Haute	ur F	FA	G	GA	GB	GC	Н	НА	HC	HD	HE	K	L	LC	UB	UC	VA	VB	VC	VD
d'axe																				
71	5	4	11	16	8.5	12.5	71	9	151	178	62	7	264	292	M16x1,5	M16x1,5	30	105	31.5	73.5
80	6	5	15.5	21.5	11	16	80	10	168	195	69	10	321	356	M25x1,5	M25x1,5	32	105	32	74
90	8	5	20	27	11	16	90	11	189	219	79	10	357	392	M25x1,5	M25x1,5	42	118	39	81
100	8	6	24	31	15.5	21.5	100	12	217	247	94	12	381	426	M32x1,5	M32x1,5	45	118	36	84
112	8	6	24	31	15.5	21.5	112	12	229	259	94	12	403	448	M32x1,5	M32x1,5	45	118	36	84
132	10	8	33	41	20	27	132	14	272	300	116	12	533	588	M32x1,5	M32x1,5	65	169	82	130

IM B5 (IM3001), IM 3002

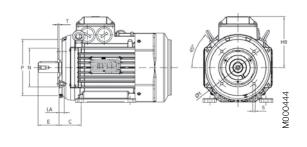
Hauteur	HB	LA	М	N	Р	S	Т	
d'axe								
71	107.5	9	130	110	160	10	3.5	
80	115.5	10	165	130	200	12	3.5	
90	129.5	10	165	130	200	12	3.5	
100	147.5	11	215	180	250	15	4.0	
112	147.5	11	215	180	250	15	4.0	
132	168	12.5	265	230	300	15	4.0	

IM B14 (IM3601), IM 3602

Hauteur	НВ	LA	М	N	Р	S	Т
d'axe							
71	107.5	8	85	70	105	M6	2.5
80	115.5	8	100	80	120	M6	3.0
90	129.5	10	115	95	140	M8	3.0
100	147.5	10	130	110	160	M8	3.5
112	147.5	10	130	110	160	M8	3.5
132	168	12	165	130	200	M10	3.5


Tolérances :

A,B + - 0.8 H +0 -0.5 D, DA ISO j6 N ISO j6 F, FA ISO h9 C, CA +- 0.8 Dimensions en mm.


Moteurs Process Performance BT et Premium BT • gamme fonte Hauteurs d'axe 71-132

Schémas d'encombrement

Moteur à pattes et à bride à trous lisses : IM B35 (IM 2001), IM 2002

Moteur à pattes et à bride à trous taraudés : IM B34 (IM 2101), IM 2102

IM B35 (IM 2001), IM 2002, IM B34 (IM 2101), IM 2102

200 (- ,,			. (,, -														
Hauteur	Α	AA	AB	ΑE	AF	В	BA	BB	BC	С	CA	CB	D-Tol.	DA	DB	DC	Е	EΑ	EG	EH
d'axe																				
71	112	24	136	105	139	90	24	110	24	45	104	10	14-j6	11	M5	M4	30	23	12.5	10
80	125	28	154	105	157	100	28	125	28	50	136	12.5	19-j6	14	M6	M5	40	30	16	12.5
90S	140	30	170	118	177	100	30	150	55	56	156.5	12.5	24-j6	14	M8	M5	50	30	19	12.5
90L	140	30	170	118	177	125	30	150	55	56	131.5	12.5	24-j6	14	M8	M5	50	30	19	12.5
100	160	38	200	118	197	140	34	172	34	63	123	16	28-j6	19	M10	M6	60	40	22	16
112	190	41	230	118	197	140	34	172	34	70	138	16	28-j6	19	M10	M6	60	40	22	16
132S	216	47	268.5	169	261	140	40	212	76	89	228	16	38-k6	24	M12	M8	80	50	28	19
132M	216	47	268.5	169	261	178	40	212	76	89	190	16	38-k6	24	M12	M8	80	50	28	19
132M	216	47	268.5	169	261	178	40	212	76	89	190	16	38-k6	24	M12	M8	80	50	28	1

Hauteu	ır F	FA	G	GA	GB	GC	Н	HA	HC	HD	HE	K	L	LC	UB	UC	VA	VB	VC	VD
d'axe																				
71	5	4	11	16	8.5	12.5	71	9	151	178	62	7	264	292	M16x1.5	M16x1.5	30	105	31.5	73.5
80	6	5	15.5	21.5	11	16	80	10	168	195	69	10	321	356	M25x1.5	M25x1.5	32	105	32	74
90	8	5	20	27	11	16	90	11	189	219	79	10	357	392	M25x1.5	M25x1.5	42	118	39	81
100	8	6	24	31	15.5	21.5	100	12	217	247	94	12	381	426	M32x1.5	M32x1.5	45	118	36	84
112	8	6	24	31	15.5	21.5	112	12	229	259	94	12	403	448	M32x1.5	M32x1.5	45	118	36	84
132	10	8	33	41	20	27	132	14	272	300	116	12	533	588	M32x1.5	M32x1.5	65	169	82	130

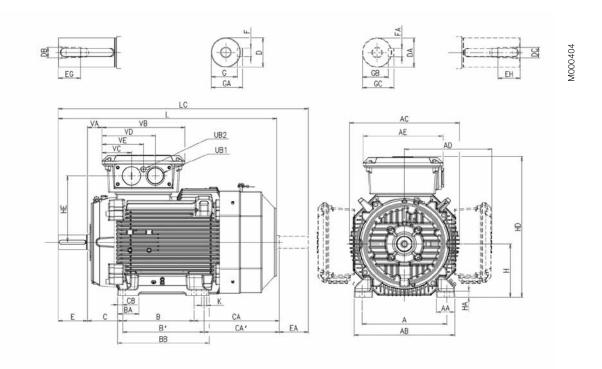
IM B35 (IM 2001), IM 2002

Hauteur	LA	М	Ν	Р	S	Т
d'axe						
71	9	130	110	160	10	3.5
80	10	165	130	200	12	3.5
90	10	165	130	200	12	3.5
100	11	215	180	250	15	4.0
112	11	215	180	250	15	4.0
132	12.5	265	230	300	15	4.0

IM B34 (IM 2101), IM 2102

Hauteur	LA	М	N	Р	S	Т	S	Т
d'axe								
71	8	85	70	105	M6	2.5	M6	2.5
80	8	100	80	120	M6	3	M6	3.0
90	10	115	95	140	M8	3	M8	3.0
100	10	130	110	160	M8	3.5	M8	3.5
112	10	130	110	160	M8	3.5	M8	3.5
132	12	165	130	200	M10	3.5	M10	3.5

Tolérances:


A,B +0 -0.5 D, DA ISO j6 Ν ISO j6 F, FA ISO h9 C, CA +- 0.8

Dimensions en mm.

Moteurs Process Performance BT et Premium BT • gamme fonte Hauteurs d'axe 160-250

Schémas d'encombrement

Moteur à pattes : IM B3 (IM 1001), IM B6 (IM 1051), IM B7 (IM 1061), IM B8 (IM 1071), IM V5 (IM 1011), IM V6 (IM 1031)

Hauteur	Nbre	Α	AA	AB	AC	AD	AE	В	B'	ВА	BB	С	CA	CA'	CB	D	DA	DB	DC	Е	EA	EG	EH
d'axe	pôles																						
160 ¹)	2-8	254	67	310	338	261	257	210	254	69	294	108	164	126	20	42	32	M16	M12	110	80	36	28
160 ²⁾	2-8	254	67	310	338	261	257	210	254	69	294	108	262	224	20	42	32	M16	M12	110	80	36	28
180	2-8	279	67	340	381	281	257	241	279	68	317	121	263	225	19	48	32	M16	M12	110	80	36	28
200	2-8	318	69	378	413	328	300	267	305	80	345	133	314	276	20	55	45	M20	M16	110	110	42	36
225	2	356	84	435	460	348	300	286	311	69	351	149	314	289	20	55	55	M20	M20	110	110	42	42
225	4-8	356	84	435	460	348	300	286	311	69	351	149	314	289	20	60	55	M20	M20	140	110	42	42
250	2	406	92	480	508	376	300	311	349	69	392	168	281	243	23	60	55	M20	M20	140	110	42	42
250	4-8	406	92	480	508	376	300	311	349	69	392	168	281	243	23	65	55	M20	M20	140	110	42	42

Hauteur	Nbre	F	FA	G	GA	GB	GC	Н	HA	HD	HE	K	L	LC	UB1	UB2	VA	VB	VC	VD	VE	
d'axe	pôles																					
160 ¹⁾	2-8	12	10	37	45	27	35	160	23	421	195	14.5	584	671.5	M40	M16	49	257	95	162	129	
160 ²⁾	2-8	12	10	37	45	27	35	160	23	421	195	14.5	681	768.5	M40	M16	49	257	95	162	129	
180	2-8	14	10	42.5	51.5	27	35	180	23	461	215	14.5	726	815	M40	M16	62	257	95	162	129	
200	2-8	16	14	49	59	39.5	48.5	200	23	528	249	18.5	821	934	M63	M16	55	311	111	201	156	
225	2	16	16	49	59	49	59	225	23	573	269	18.5	849	971	M63	M16	48	311	111	201	156	
225	4-8	18	16	53	64	49	59	225	23	573	269	18.5	879	1001	M63	M16	48	311	111	201	156	
250	2	18	16	53	64	49	59	250	23	626	297	24.0	884	1010	M63	M16	48	311	111	201	156	
250	4-8	18	16	58	69	49	59	250	23	626	297	24.0	884	1010	M63	M16	48	311	111	201	156	

Tolérances:

A, B ISO js14 C, CA ± 0.8 D, DA ISO k6 < Ø 50mm ISO m6 > Ø 50mm

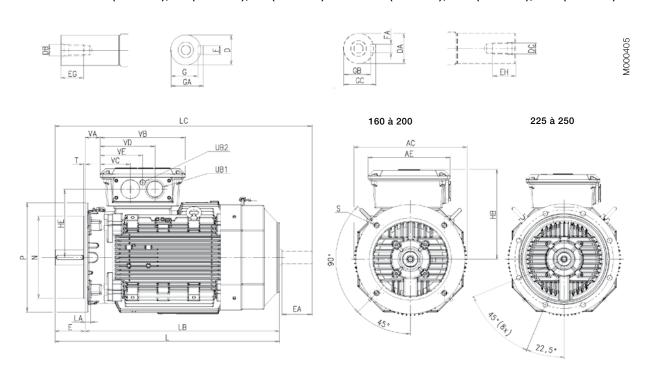
ISO h9 F, FA +0 -0.5

M3BP:

1) MLA-2, MLB-2, MLC-2, MLA-4, MLA-6, MLA-8 et MLB 8 pôles MLD-2, MLE-2, MLB-4, MLC-4, MLD-4, MLB-6,

MLC-6 et MLC-8 pôles

M4BP:


MLB-2, MLC-2, tous les moteurs 4 et 6 pôles

Dimensions en mm.

Moteurs Process Performance BT et Premium BT • gamme fonte Hauteurs d'axe 160-250

Schémas d'encombrement

Moteur à brides: IM B5 (IM 3001), V1 (IM 3011), V3 (IM 3031) et IM B14 (IM 3601), V18 (IM 3611), V19 (IM 3631)

Hauteur	Nbre	AC	ΑE	D	DA	DB	DC	Е	EA	EG	EH	F	FA	G	GA	GB	GC	HB	HE
d'axe	pôles																		
160 ¹)	2-8	338	257	42	32	M16	M12	110	80	36	28	12	10	37	45	27	35	261	195
160 ²⁾	2-8	338	257	42	32	M16	M12	110	80	36	28	12	10	37	45	27	35	261	195
180	2-8	381	257	48	32	M16	M12	110	80	36	28	14	10	42.5	51.5	27	35	281	215
200	2-8	413	300	55	45	M20	M16	110	110	42	36	16	14	49	59	39.5	48.5	328	249
225	2	460	300	55	55	M20	M20	110	110	42	42	16	16	49	59	49	59	348	269
225	4-8	460	300	60	55	M20	M20	140	110	42	42	18	16	53	64	49	59	325	269
250	2	508	300	60	55	M20	M20	140	110	42	42	18	16	53	64	49	59	376	297
250	4-8	508	300	65	55	M20	M20	140	110	42	42	18	16	58	69	49	59	376	297

Hauteur	Nbre	L	LA	LB	LC	М	Ν	Р	S	Т	UB1	UB2	VA	VB	VC	VD	VE	
d'axe	pôles																	
160 1)	2-8	584	20	474	671.5	300	250	350	19	5	M40	M16	49	257	95	162	129	
160 ²⁾	2-8	681	20	571	768.5	300	250	350	19	5	M40	M16	49	257	95	162	129	
180	2-8	726	15	616	815	300	250	350	19	5	M40	M16	62	257	95	162	129	
200	2-8	821	20	711	934	350	300	400	19	5	M63	M16	55	311	111	201	156	
225	2	849	20	739	971	400	350	450	19	5	M63	M16	48	311	111	201	156	
225	4-8	879	20	739	1001	400	350	450	19	5	M63	M16	48	311	111	201	156	
250	2	884	24	744	1010	500	450	550	19	5	M63	M16	48	311	111	201	156	
250	4-8	884	24	744	1010	500	450	550	19	5	M63	M16	48	311	111	201	156	

Tolérances:

D, DA ISO k6 < Ø 50mm ISO m6 > Ø 50mm

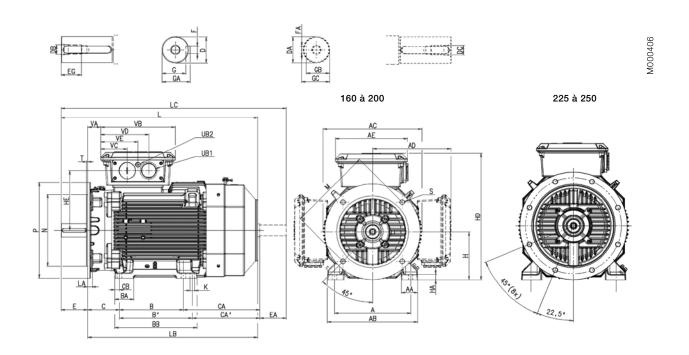
F, FA ISO h9 ISO j6

M3BP:

MLA-2, MLB-2, MLC-2, MLA-4, MLA-6, MLA-8 et MLB 8 pôles

MLD-2, MLE-2, MLB-4, MLC-4, MLD-4, MLB-6, MLC-6 et MLC-8 pôles

M4BP:


1) MLA-2

2) MLB-2, MLC-2, tous les moteurs 4 et 6 pôles

Dimensions en mm.

Moteurs Process Performance BT et Premium BT • gamme fonte Hauteurs d'axe 160-250 Schémas d'encombrement

Moteur à pattes et à bride : IM B35 (IM 2001), IM V15 (IM 2011), IM V36 (IM 2031)

Hauteur	Nbre	Α	AA	AB	AC	AD	AE	В	B'	ВА	BB	С	CA	CA'	CB	D	DA	DB	DC	Е	EA	EG	EH	F	FA	G
d'axe	pôles																									
160 1)	2-8	254	67	310	338	261	257	210	254	69	294	108	164	126	20	42	32	M16	M12	110	80	36	28	12	10	37
160 ²⁾	2-8	254	67	310	338	261	257	210	254	69	294	108	262	224	20	42	32	M16	M12	110	80	36	28	12	10	37
180	2-8	279	67	340	381	281	257	241	279	68	317	121	263	225	19	48	32	M16	M12	110	80	36	28	14	10	42.5
200	2-8	318	69	378	413	328	300	267	305	80	345	133	314	276	20	55	45	M20	M16	110	110	42	36	16	14	49
225	2	356	84	435	460	348	300	286	311	69	351	149	314	289	20	55	55	M20	M20	110	110	42	42	16	16	49
225	4-8	356	84	435	460	348	300	286	311	69	351	149	314	289	20	60	55	M20	M20	140	110	42	42	18	16	53
250	2	406	92	480	508	376	300	311	349	69	392	168	281	243	23	60	55	M20	M20	140	110	42	42	18	16	53
250	4-8	406	92	480	508	376	300	311	349	69	392	168	281	243	23	65	55	M20	M20	140	110	42	42	18	16	58
Hauteur	Nbre	GA	GB	GC	Н	HA	HD	HE	K	L	LA	LB	LC	М	Ν	Р	S	Т	UB1	UB2	VA	VB	VC	VD	VE	
d'axe	pôles																									
160 1)	2-8	45	27	35	160	23	421	195	14.5	584	20	474	671.5	300	250	350	19	5	M40	M16	49	257	95	162	129	
160 ²⁾	2-8	45	27	35	160	23	421	195	14.5	681	20	571	768.5	300	250	350	19	5	M40	M16	49	257	95	162	129	
180	2-8	51.5	27	35	180	23	461	215	14.5	726	15	616	815	300	250	350	19	5	M40	M16	62	257	95	162	129	
200	2-8	59	39.5	48.5	200	23	528	249	18.5	821	20	711	934	350	300	400	19	5	M63	M16	55	311	111	201	156	
225	2	59	49	59	225	23	573	269	18.5	849	20	739	971	400	350	450	19	5	M63	M16	48	311	111	201	156	
225	4-8	64	49	59	225	23	573	269	18.5	879	20	739	1001	400	350	450	19	5	M63	M16	48	311	111	201	156	
250	2	64	49	59	250	23	626	297	24.0	884	24	744	1010	500	450	550	19	5	M63	M16	48	311	111	201	156	
250	4-8	69	49	59	250	23	626	297	24.0	884	24	744	1010	500	450	550	19	5	M63	M16	48	311	111	201	156	

Tolérances :

A, B ISO js14
C, CA ± 0.8

D, DA ISO k6 $< \emptyset$ 50 mm ISO m6 $> \emptyset$ 50 mm

F, FA ISO h9

H +0 -0.5N ISO j6

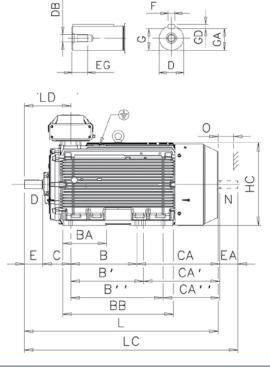
M3BP:

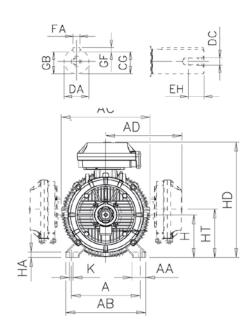
MLA-2, MLB-2, MLC-2, MLA-4, MLA-6, MLA-8 et MLB 8 pôles

MLD-2, MLE-2, MLB-4, MLC-4, MLD-4, MLB-6, MLC-6

et MLC-8 pôles

M4BP:


- MLA-2
- ²⁾ MLB-2, MLC-2, tous les moteurs 4 et 6 pôles


Dimensions en mm.

Moteurs Process Performance BT et Premium BT • gamme fonte Hauteurs d'axe 280-315

Schémas d'encombrement

Moteur à pattes : IM B3 (IM 1001), IM B6 (IM 1051), IM B7 (IM 1061), IM B8 (IM 1071), IM V5 (IM 1011), IM V6 (IM 1031)

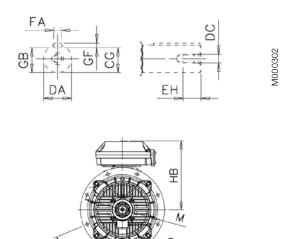
Hauteur	Nbre	Α	AA	AB	AC	AD1)	AD ²⁾	В	B'	B"	ВА	BB	С	CA	CA'	CA "	D	DA	DB	DC	Е	EA	EG	EH
d'axe	pôles																							
280 SM_	_ 2	457	84	530	577	481	-	368	419	-	147	506	190	400	349	-	65	60	M20	M20	140	140	40	40
	4-12	457	84	530	577	481	-	368	419	-	147	506	190	400	349	-	75	65	M20	M20	140	140	40	40
315 SM_	2	508	100	590	654	545	-	406	457	-	180	558	216	420	369	-	65	60	M20	M20	140	140	40	40
	4-12	508	100	590	654	545	-	406	457	-	180	558	216	420	369	-	80	75	M20	M20	170	140	40	40
315 ML_	. 2	508	100	590	654	545	-	457	508	-	212	669	216	480	429	-	65	60	M20	M20	140	140	40	40
	4-12	508	100	590	654	545	-	457	508	-	212	669	216	480	429	-	90	75	M24	M20	170	140	48	40
315 LK_	2	508	100	590	654	562	576	508	560	710	336	851	216	635	583	433	65	60	M20	M20	140	140	40	40
	4-12	508	100	590	654	562	576	508	560	710	336	851	216	635	583	433	90	75	M24	M20	170	140	48	40

Hauteur	Nbre	F	FA	G	GA	GB	GC	GD	GF	Н	HA	HC	HD ¹⁾	HD ²⁾	HT	K	L	LC	LD	LD	0
d'axe	pôles												dessus	dessus				dessus	côté		
280 SM	_ 2	18	18	58	69	53	64	11	11	280	31	564	762	-	337.5	24	1088	1238	336	539	100
	4-12	20	18	67.5	79.5	58	69	12	11	280	31	564	762	-	337.5	24	1088	1238	336	539	100
315 SM	_ 2	18	18	58	69	53	64	11	11	315	40	638	852	-	375	28	1174	1322	356	585	115
	4-12	22	20	71	85	67.5	79.5	14	12	315	40	638	852	-	375	28	1204	1352	386	615	115
315 ML	_ 2	18	18	58	69	53	64	11	11	315	40	638	852	-	375	28	1285	1433	356	640	115
	4-12	25	20	81	95	67.5	79.5	14	12	315	40	638	852	-	375	28	1315	1463	386	670	115
315 LK_	_ 2	18	18	58	69	53	64	11	11	315	40	638	870	880	359	28	1491	1639	356	721	115
	4-12	25	20	81	95	67.5	79.5	14	12	315	40	638	852	880	359	28	1521	1669	386	751	115

Tolérances:

A, B ± 0,8 ¹⁾ Boîte à bornes 370 **C, CA** ± 0.8 ²⁾ Boîte à bornes 750 **D** ISO k6 < Ø 50mm

ISO m6 > Ø 50mm F ISO h9


F ISO h9H +0 -0.5N ISO j6

Dimensions en mm.

Moteurs Process Performance BT et Premium BT • gamme fonte Hauteurs d'axe 280-315 Schémas d'encombrement

Moteur à bride: IM B5 (IM3001), V1 (IM3011), V3 (IM3031) et IM B14 (IM3601), V18 (IM3611), V19 (IM3631)

Hauteur	Nbre	AC	D	DA	DB	DC	Е	EA	EG	EH	F	FA	G	GA	GB	GC	GD	GF
		AC	D	DA	DB	DC	_	LA	LG		Г	FA	G	GA	GB	GC	GD	GF
d'axe	pôles																	
280 SM_	2	577	65	60	M20	M20	140	140	40	40	18	18	58	69	53	64	11	11
	4-12	577	75	65	M20	M20	140	140	40	40	20	18	67.5	79.5	58	69	12	11
315 SM_	2	645	65	60	M20	M20	140	140	40	40	18	18	58	69	53	64	11	11
	4-12	645	80	75	M20	M20	170	140	40	40	22	20	71	85	67.5	79.5	14	12
315 ML_	2	645	65	60	M20	M20	140	140	40	40	18	18	58	69	53	64	11	11
	4-12	645	90	75	M24	M20	170	140	48	40	25	20	81	95	67.5	79.5	14	12
315 LK_	2	645	65	60	M20	M20	140	140	40	40	18	18	58	69	53	64	11	11
	4-12	645	90	75	M24	M20	170	140	48	40	25	20	81	95	67.5	79.5	14	12
Hauteur	Nbre	HB ¹⁾	HB ²⁾	L	LA	LB	LC	LD	M	N	0	Р	S	Т				
Hauteur d'axe	Nbre pôles	HB ¹⁾	HB ²⁾	L	LA	LB	LC	LD	М	N	0	Р	S	Т				
		HB ¹⁾	HB ²⁾	L 1088	LA 23	LB 948	LC 1238	LD 336	M 500	N 450	O 100	P 550	S 18	T 5				
d'axe	pôles													T 5 5				
d'axe	pôles 2	482	-	1088	23	948	1238	336	500	450	100	550	18					
d'axe 280 SM_	pôles 2 4-12	482 482	-	1088 1088	23 23	948 948	1238 1238	336 336	500 500	450 450	100	550 550	18 18	5				
d'axe 280 SM_	pôles 2 4-12 2	482 482 537	- - -	1088 1088 1174	23 23 25	948 948 1034	1238 1238 1322	336 336 356	500 500 600	450 450 550	100 100 115	550 550 660	18 18 23	5 6				
d'axe 280 SM_ 315 SM_	pôles 2 4-12 2 4-12	482 482 537 537	- - -	1088 1088 1174 1204	23 23 25 25	948 948 1034 1034	1238 1238 1322 1352	336 336 356 386	500 500 600 600	450 450 550 550	100 100 115 115	550 550 660 660	18 18 23 23	5 6 6				
d'axe 280 SM_ 315 SM_	pôles 2 4-12 2 4-12 2 4-12	482 482 537 537 537	- - - -	1088 1088 1174 1204 1285	23 23 25 25 25 25	948 948 1034 1034 1145	1238 1238 1322 1352 1433	336 336 356 386 356	500 500 600 600 600	450 450 550 550 550	100 100 115 115 115	550 550 660 660 660	18 18 23 23 23	5 6 6 6				

600

550

115

Tolérances :

 D, DA
 ISO m6
 ¹¹ Boîte à bornes 370

 F, FA
 ISO h9
 ²¹ Boîte à bornes 750

565

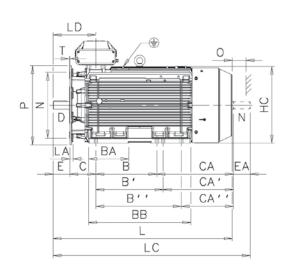
1306

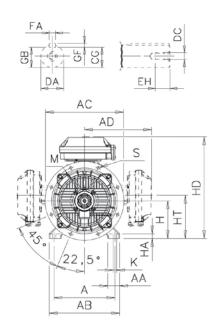
ISO j6 (280 SM_)
ISO js6 (315_)

4-12

537

Dimensions en mm.


23

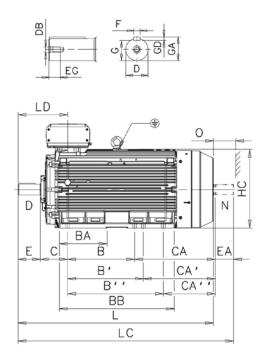

Moteurs Process Performance BT et Premium BT • gamme fonte Hauteurs d'axe 280-315

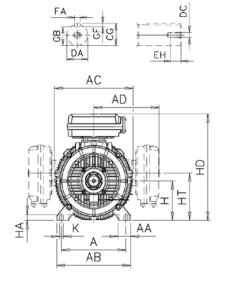
Schémas d'encombrement

Moteur à pattes et à bride : IM B35 (IM 2001), IM V15 (IM 2011), IM V36 (IM 2031)

Hauteur	Nbre	Α	AA	AB	AC	AD ¹⁾	AD ²⁾	В	В'	B"	BA	BB	С	CA	CA ' CA"	D	DA	DB	DC	Е	EA	EG	EH	FF	Α	G
d'axe	pôles																									
280 SM_	2	457	84	530	577	481	-	368	419	-	147	506	190	400	349 -	65	60	M20	M20	140	140	40	40	18 1	8	58
	4-12	457	84	530	577	481	-	368	419	-	147	506	190	400	349 -	75	65	M20	M20	140	140	40	40	20 1	8	67.5
315 SM_	2	508	100	590	654	545	-	406	457	-	180	558	216	420	369 -	65	60	M20	M20	140	140	40	40	18 1	8	58
	4-12	508	100	590	654	545	-	406	457	-	180	558	216	420	369 -	80	75	M20	M20	170	140	40	40	22 2	20	71
315 ML_	2	508	100	590	654	545	-	457	508	-	212	669	216	480	429 -	65	60	M20	M20	140	140	40	40	18 1	8	58
	4-12	508	100	590	654	545	-	457	508	-	212	669	216	480	429 -	90	75	M24	M20	170	140	48	40	25 2	20	81
315 LK_	2	508	100	590	654	562	576	508	560	710	336	851	216	635	583 433	65	60	M20	M20	140	140	40	40	18 1	8	58
	4-12	508	100	590	654	562	576	508	560	710	336	851	216	635	583 433	90	75	M24	M20	170	140	48	40	25 2	20	81

Hauteur	Nbre	GA	GB	GC	GD	GF	Н	НА	HC HD ¹⁾	HD ²⁾	HT	K	L	LA	LC	LD	LD	М	Ν	Р	S	Т	0
d'axe	pôles								dessu	ıs dessus	S				dessus	3	côté						
280 SM_	2	69	53	64	11	11	280	31	564 762	=	337.5	24	1088	23	1238	336	539	500	450	550	18	5	100
	4-12	79.5	58	69	12	11	280	31	564 762	-	337.5	24	1088	23	1238	336	539	500	450	550	18	5	100
315 SM_	2	69	53	64	11	11	315	40	638 852	-	375	28	1174	25	1322	356	585	600	550	660	23	6	115
	4-12	85	67.5	79.5	14	12	315	40	638 852	-	375	28	1204	25	1352	386	615	600	550	660	23	6	115
315 ML_	. 2	69	53	64	11	11	315	40	638 852	-	375	28	1285	25	1433	356	640	600	550	660	23	6	115
	4-12	95	67.5	79.5	14	12	315	40	638 852	-	375	28	1315	25	1463	386	670	600	550	660	23	6	115
315 LK_	2	69	53	64	11	11	315	40	638 852	880	359	28	1491	25	1639	356	721	600	550	660	23	6	115
	4-12	95	67.5	79.5	14	12	315	40	638 852	880	359	28	1521	25	1669	386	751	600	550	660	23	6	115


Tolérances:


A, B ± 0,8 1) Boîte à bornes 370
D ISO m6 2) Boîte à bornes 750
F ISO h9
H +0 -1.0
N ISO j6 (280 SM_)
ISO js6 (315_)
C ± 0.8

Dimensions en mm.

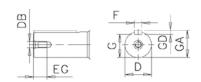
Moteurs Process Performance BT et Premium BT • gamme fonte Hauteurs d'axe 355-450 Schémas d'encombrement

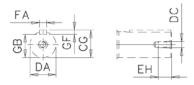
Moteur à pattes : IM B3 (IM 1001), IM B6 (IM 1051), IM B7 (IM 1061), IM B8 (IM 1071), IM V5 (IM 1011), IM V6 (IM 1031)

Hauteur	Nbre	Α	AA	AB	AC	AD1)	AD ²⁾	В	B'	B"	ВА	BB	С	CA	CA'	CA"	D	DA	DB	DC	E	EA EG EH
d'axe	pôles																					
355 SM_	2	610	120	700	746	604	618	500	560	-	221	722	254	525	465	-	70	70	M20	M20	140	140 42 40
	4-12	610	120	700	746	604	618	500	560	-	221	722	254	525	465	-	100	90	M24	M24	210	170 51 51
355 ML_	2	610	120	700	746	604	618	560	630	-	267	827	254	500	570	-	70	70	M20	M20	140	140 42 40
	4-12	610	120	700	746	604	618	560	630	-	267	827	254	500	570	-	100	90	M24	M24	210	170 51 51
355 LK_4)	2	610	120	700	746	604	618	630	710	900	447	1077	254	750	670	480	70	70	M20	M20	140	140 42 40
	4-12	610	120	700	746	604	618	630	710	900	447	1077	254	750	670	480	100	90	M24	M24	210	170 51 51
400 L_	2	710	150	840	834	-	660	900	1000	-	410	1156	224	567	467	-	80	70	M20	M20	170	140 42 40
	4-12	710	150	840	834	-	660	900	1000	-	410	1156	224	567	467	-	110	90	M24	M24	210	170 50 51
400 LK_4)	2	686	150	840	834	-	660	710	800	900	410	1156	280	701	611	511	80	70	M20	M20	170	140 42 40
	4-12	686	150	840	834	-	660	710	800	900	410	1156	280	701	611	511	100	90	M24	M24	210	170 50 51
450 L_	2	800	160	950	966	-	-	1000	1120	1250	450	1420	250	-	-	-	80	-	M20	-	170	- 42 -
	4-12	800	160	950	966	-	-	1000	1120	1250	450	1420	250	737	617	487	120	100	M24	M24	210	210 50 50
Hauteur	Nbre	F	FA	G	GA	GB	GC	GD	GF	Н	НА	НС	HD ¹⁾	HD ²⁾	HD ³⁾	HD	K	L	LC	LD	LD	0
d'axe	pôles												dessus	s dessus	dessus	scôté				dessus	côté	

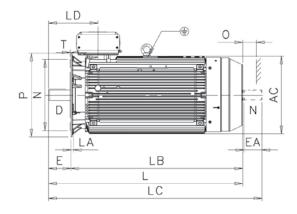
Hauteur	Nore	-	FA	G	GA	GB	GC	GD	GF	Н	HA	HC	HD"	HD ² /	HD°	HD	K	L	LC	LD	LD	O
d'axe	pôles												dessus	dessus	dessu	s côté				dessus	s côté	
355 SM_	2	20	20	62.5	74.5	62.5	74.5	12	12	355	45	725	944	958	-	843	35	1409	1559	397	679	130
	4-12	28	25	90	106	81	95	16	14	355	45	725	944	958	-	843	35	1479	1659	467	750	130
355 ML_	2	20	20	62.5	74.5	62.5	74.5	12	12	355	45	725	944	958	-	843	35	1514	1664	397	732	130
	4-12	28	25	90	106	81	95	16	14	355	45	725	944	958	-	843	35	1584	1764	467	802	130
355 LK_4	2	20	20	62.5	74.5	62.5	74.5	12	12	355	45	725	944	958	-	843	35	1764	1914	397	857	130
	4-12	28	25	90	106	81	95	16	14	355	45	725	944	958	-	843	35	1834	2014	467	927	130
400 L_	2	22	20	71	85	67.5	79.5	12	12	400	45	814	-	1045	-	943	35	1851	2001	458	909	150
	4-12	28	25	90	116	81	95	16	14	400	45	814	-	1045	-	943	35	1891	2071	498	949	150
400 LK_4	2	22	20	71	85	67.5	79.5	14	12	400	45	814	-	1045	-	943	35	1851	2001	458	909	150
	4-12	28	25	90	106	81	95	16	14	400	45	814	-	1045	-	943	35	1891	2071	498	949	150
450 L_	2	22	-	71	85	-	-	14	-	450	81	933	-	1169	1231	-	42	2147	-	485	-	180
	4-12	32	28	109	127	100	116	18	16	450	81	933	-	1169	1231	-	42	2187	2407	525	-	180

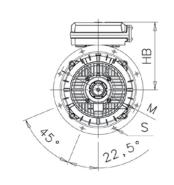
Tolérances:


A, B	± 0,8	1)	Boîte à bornes 370
D, DA	ISO m6	2)	Boîte à bornes 750
F, FA	ISO h9	3)	Boîte à bornes 1200
Н	+0 -1.0	4)	Taille avec autres dimensions
N	ISO j6		
0.04	. 0.0		


Dimensions en mm.

Moteurs Process Performance BT et Premium BT • gamme fonte Hauteurs d'axe 355-450

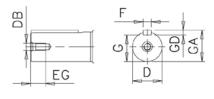

Schémas d'encombrement

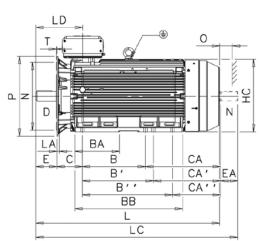

Moteur à bride: IM B5 (IM 3001), IM V1 (IM 3011), IM V3 (IM 3031), IM B14 (IM 3601), IM V18 (IM 3611) et IM V19 (IM 3631)

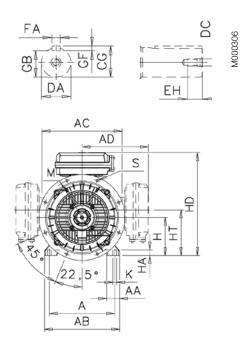
Hauteur	Nbre	AC	D	DA	DB	DC	Е	EA	EG	EH	F	FA	G	GA	GB	GC	GD	GF
d'axe	pôles																	
355 SM_	2	740	70	70	M20	M20	140	140	42	40	20	20	62.5	74.5	62.5	74.5	12	12
	4-12	740	100	90	M24	M24	210	170	51	51	28	25	90	106	81	95	16	14
355 ML_	2	740	70	70	M20	M20	140	140	42	40	20	20	62.5	74.5	62.5	74.5	12	12
	4-12	740	100	90	M24	M24	210	170	51	51	28	25	90	106	81	95	16	14
355 LK_4)	2	740	70	70	M20	M20	140	140	42	40	20	20	62.5	74.5	62.5	74.5	12	12
	4-12	740	100	90	M24	M24	210	170	51	51	28	25	90	106	81	95	16	14
400 L_	2	814	80	70	M20	M20	170	140	42	40	22	20	71	85	67.5	79.5	12	12
	4-12	814	110	90	M24	M24	210	170	50	50	28	25	100	116	81	95	16	14
400 LK 4)	2	814	80	70	M20	M20	170	140	42	40	22	20	71	85	67.5	79.5	12	12
	4-12	814	100	90	M24	M24	210	170	50	50	28	25	90	106	81	95	16	14
450 L_	2	966	80	-	M20	-	170	-	42	-	22	-	71	85	-	-	14	-
	4-12	966	120	100	M24	M24	210	210	50	50	32	28	109	127	100	116	18	16

Hauteur	Nbre	HB ¹⁾	HB ²⁾	HB ³⁾	L	LA	LB	LC	LD ¹⁾	LD ²⁾	LD ³⁾	М	Ν	0	Р	S	Т
d'axe	pôles																
355 SM_	2	589	603	-	1409	25	1269	1559	397	397	-	740	680	130	800	23	6
	4-12	589	603	-	1479	25	1269	1659	467	467	-	740	680	130	800	23	6
355 ML_	2	589	603	-	1514	25	1374	1664	397	397	-	740	680	130	800	23	6
	4-12	589	603	-	1584	25	1374	1764	467	467	-	740	680	130	800	23	6
355 LK_4)	2	589	603	-	1764	25	1624	1914	397	397	-	740	680	130	800	23	6
	4-12	589	603	-	1834	25	1624	2014	467	467	-	740	680	130	800	23	6
400 L_	2	-	645	-	1851	26	1681	2001	458	458	-	940	880	150	1000	28	6
	4-12	-	645	-	1891	26	1681	2071	498	498	-	940	880	150	1000	28	6
400 LK_4)	2	-	645	-	1851	26	1681	2001	458	458	-	740	680	150	800	24	6
	4-12	-	645	=	1891	26	1681	2071	498	498	-	740	680	150	800	24	6
450 L_	2	-	719	843	2147	33	1937	-	-	485	520	1080	1000	180	1150	28	6
	4-12	-	719	843	2187	33	1977	2407	-	525	560	1080	1000	180	1150	28	6

Tolérances:


D. DA ISO m6 Ν ISO js6 (315_) F, FA ISO h9


- Boîte à bornes 370
- Boîte à bornes 750
- Boîte à bornes 1200
- Taille avec autres dimensions


Dimensions en mm.

Moteurs Process Performance BT et Premium BT • gamme fonte Hauteurs d'axe 355-450 Schémas d'encombrement

Moteur à pattes et à bride : IM B35 (IM 2001), IM V15 (IM 2011), IM V36 (IM 2031)

Hauteur	Nbre	Α	AA	AB	AC A	\D1)	AD 2)	В	В'	B"	BA	BB	С	CA	CA '	CA"	D	DA	DB	DC	Е	EA	EG	EH F	FA G
d'axe	pôles	;																							
355 SM	_ 2	610	120	700	746 6	604	618	500	560	-	221	722	254	525	465	-	70	70	M20	M20	140	140	42	40 20	20 62.5
	4-12	610	120	700	746 6	604	618	500	560	-	221	722	254	525	465	-	100	90	M24	M24	210	170	51	48 28	25 90
355 ML	_ 2	610	120	700	746 6	604	618	560	630	-	267	827	254	500	570	-	70	70	M20	M20	140	140	42	40 20	20 62.5
	4-12	610	120	700	746 6	604	618	560	630	-	267	827	254	500	570	-	100	90	M24	M24	210	170	51	48 28	25 90
355 LK_	4) 2	610	120	700	746 6	604	618	630	710	900	447	1077	254	750	670	480	70	70	M20	M20	140	140	42	40 20	20 62.5
	4-12	610	120	700	746 6	604	618	630	710	900	447	1077	254	750	670	480	100	90	M24	M24	210	170	51	48 28	25 90
400 L_	2	710	150	840	834 -		660	900	1000	-	410	1156	224	567	467	-	80	70	M20	M20	170	140	42	40 22	20 71
	4-12	710	150	840	834 -		660	900	1000	-	410	1156	224	567	467	-	110	90	M24	M24	210	170	50	50 28	25 100
400 LK_	4) 2	686	150	840	834 -		660	710	800	900	410	1156	280	701	611	511	80	70	M20	M20	170	140	42	40 22	20 71
	4-12	686	150	840	834 -		660	710	800	900	410	1156	280	701	611	511	100	90	M24	M24	210	170	50	50 28	25 90
450 L_	2	800	160	950	966 -		-	1000	1120	1250	450	1420	250	-	-	-	80	-	M20	-	170	-	-	- 22	- 71
	4-12	800	160	950	966 -		-	1000	1120	1250	450	1420	250	737	617	487	120	100	M24	M24	210	210	50	50 32	28 109

Hauteur	Nbre	GA	GB	GC	GD	GF	Н	НА	HC	HD 1)	HD 2)	HD ³⁾	HD	K	L LA	LC	LD ¹⁾	LD ²⁾	LD ³⁾	LD	М	N	0 P	ST
d'axe	pôles	3								dessus	dessus	dessus	s côté				dessus	dessus	dessu	s côté				
355 SM	_ 2	74.5	62.5	74.5	12	12	355	45	725	944	958	-	843	35	1409 25	1559	397	397	-	679	740	680	130 800	23 6
	4-12	106	81	95	16	14	355	45	725	944	958	-	843	35	1479 25	1659	467	467	-	750	740	680	130800	23 6
355 ML_	_ 2	74.5	62.5	74.5	12	12	355	45	725	944	958	-	843	35	1514 25	1664	397	397	-	732	740	680	130800	23 6
	4-12	106	81	95	16	14	355	45	725	944	958	-	843	35	1584 25	1764	467	467	-	802	740	680	130 800	23 6
355 LK_	4) 2	74.5	62.5	74.5	12	12	355	45	725	944	958	-	843	35	1764 25	1914	397	397	-	857	740	680	130 800	23 6
	4-12	106	81	95	16	14	355	45	725	944	958	-	843	35	1834 25	2014	467	467	-	927	740	680	130800	23 6
400 L_	2	85	67.5	79.5	12	12	400	45	814	-	1045	-	943	35	1851 26	2001	458	458	-	909	940	880	150 1000	28 6
	4-12	116	81	95	16	14	400	45	814	-	1045	-	943	35	1891 26	2071	498	498	-	949	940	880	150 1000	28 6
400 LK_	4) 2	85	67.5	79.5	12	12	400	45	814	-	1045	-	943	35	1851 26	2001	458	458	-	909	740	680	150 800	24 6
	4-12	106	81	95	16	14	400	45	814	-	1045	-	943	35	1891 26	2071	498	498	-	949	740	680	150 800	24 6
450 L_	2	85	-	-	14	-	450	81	933	-	1169	1293	-	42	2147 33	-	-	485	520	-	1080	1000	180 1150	28 6
	4-12	127	100	116	18	16	450	81	933	-	1169	1293	-	42	2187 33	2407	-	525	560	-	1080	1000	180 1150	28 6

Tolérances :

C ± 0,8

A, B ± 0,8 D, DA ISO m6 F, FA ISO h9 H +0 -1.0 N ISO js6 1) Boîte à bornes 370

²⁾ Boîte à bornes 750

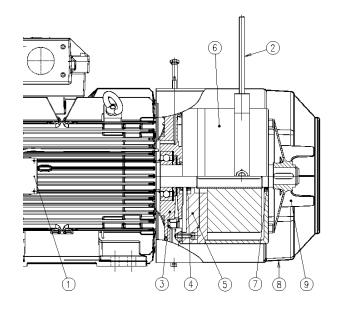
3) Boîte à bornes 1200

4) Taille avec autres dimensions

Dimensions en mm.

Moteurs Process Performance BT et Premium • gamme fonte Accessoires

Frein incorporé (code option 412)


Exécution du frein

Les freins à disque électromagnétique sont actionnés par l'intermédiaire de ressorts et relâchés par manque de courant.

Cela signifie que le moteur freinera automatiquement en cas de coupure de tension, à des fins de sécurité. Ce frein est toujours opérationnel, quelle que soit la forme de montage du moteur-frein.

Vue éclatée

- 1. Boîte de connexion (avec redresseur, en option)
- 2. Levier de déblocage manuel (en option)
- 3. Flasque C.O.C. modifié
- 4. Joint V-ring
- 5. Bride d'adaptation du frein
- 6. Frein
- 7. Joint V-ring
- 8. Capot du ventilateur
- 9. Ventilateur

Disque du frein

Les garnitures du frein sont sans amiante. Elles offrent une haute résistance à l'usure et une excellente conductivité thermique, pour des performances constantes sur toute la plage de température.

Le disque supporte un grand nombre de freinages et est insensible à la poussière et à l'humidité.

A noter que lors du remplacement d'un disque usé par un disque neuf, le couple de serrage sera différent.

Remplacement du disque du frein

Le disque doit être remplacé lorsque l'épaisseur des garnitures atteint la limite mini admissible ; consultez la notice du constructeur du frein.

Redresseur

Le redresseur est destiné aux applications de freinage c.c. Il est hautement résistant aux températures élevées et aux surtensions et comporte une protection supplémentaire du contact auxiliaire du contacteur. Particulièrement compact, il peut être monté à l'intérieur de la boîte à bornes du moteur. Le redresseur étant proposé en option, il doit être spécifié lors de la commande.

Réglage du couple de freinage

Le couple de freinage peut être réglé pour la plupart des types de frein, cf. catalogue du constructeur ou contactez ABB pour en savoir plus.

Levier de déblocage

Deux possibilités pour le déblocage manuel : avec vis (en standard) ou avec levier. Le levier de déblocage s'impose à l'action des ressorts du frein tant qu'il est appliqué.

Le levier de déblocage est proposé en option pour toutes les hauteurs d'axe ; néanmoins, il ne peut être combiné avec les freins Pintsch Bamag de type SFB.

Plaque signalétique des freins

Pour les freins, le même type de plaque signalétique que celle des moteurs standards M3BP est utilisée, à savoir plaque inox avec marquage supplémentaire du code 412 pour "frein incorporé".

Moteurs Process Performance BT et Premium • gamme fonte Accessoires

Types de frein disponibles

Les moteurs de ce catalogue peuvent incorporer les types de frein préconisés de marque Pintsch Bamag ou Stromag comme spécifié dans les tableaux suivants ; d'autres types de frein sont possibles sur demande.

Pintsch & Bamag, type KFB, IP 67, 110 V C.C.

Frein à deux disques électromagnétiques, à ressort

Type de frein Couple de Pour hauteur freinage Nm d'axe KFB 10 100 160 **KFB 16** 160 160 - 180 KFB 25 250 180 - 225 KFB 40 400 200 - 250 **KFB 63** 630 225 - 280 **KFB 1000** 1000 280 - 315 KFB 1600 1600 315 - 355 Nous consulter 355 - 450

Pintsch & Bamag, type SFB, IP 67, 110 V C.C.

Frein à deux disques électromagnétiques, à ressort

Type de frein	Couple de	Pour hauteur
	freinage Nm	d'axe
SFB 16	160	200 - 225
SFB 25	250	200 - 250
SFB 40	400	225 - 250
SFB 63	630	250
SFB 100	1000	280 - 315
SFB 160	1600	315 - 355
SFB 250	2500	355 - 400
SFB 400	4000	400
Nous consulte	r	450

Stromag, type NFF, IP 66, 110 V C.C.

Type de frein	Couple de	Pour hauteur
	freinage Nm	d'axe
NFF 10	100	160
NFF 16	160	160 - 180
NFF 25	250	180 - 225
NFF 40	400	200 - 250
NFF 63	630	225 - 250
Tailles 280-450	: nous consulte	er

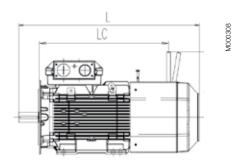
Options pour le frein

Pour commande spécifique en fabrication uniquement

- Levier de déblocage (impossible avec frein Pintsch Bamag de type SFB)
- Redresseur
- Micro-coupure
- Détecteur de proximité (impossible avec frein Stromag)
- Résistance de réchauffage (à l'arrêt)

Sur demande

- Tension spéciale du frein
- Surcouple de freinage
- Ensemble combinant frein, ventilation forcée et/ou codeur

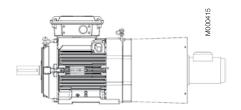

Pour d'autres options, contactez ABB.

Dimensions du moteur frein

Moteur à pattes : IM B3 (IM1001), IM B6 (IM 1051), M B7 (IM1061), IM B8 (IM 1071), IM V5 (IM 1011), IM V6 (IM 1031)

Moteur à bride : IM B5 (IM 3001), IM V1 (IM 3011), IM V3 (IM 3031), IM B14 (IM 3601), IM V18 (IM 3611), IM V19 (IM 3631)

Moteur à pattes et à bride : IM B35 (IM 2001), IM V15 (IM 2011), IM V36 (IM 2031)


Hauteur		Moteur à	pattes		Moteur à	bride		Moteur à	pattes et à b	ride
d'axe	Pôles	L	LC	J	L	LC	J	L	LC	J
160 ¹)	2-8	773	511	372	773	511	372	773	511	372
160 ²⁾	2-8	871	608	372	871	608	372	871	608	372
180	2-8	935	687	372	935	687	372	935	687	372
200	2-8	1011	695	460	1011	695	460	1011	695	460
225	2	1085	729	460	1085	729	460	1085	729	460
225	4-8	1115	729	460	1105	729	460	1115	729	460
250	2-8	1119	755	460	1119	755	460	1119	755	460

¹⁾ MLA-2, MLB-2, MLC-2, MLA-4, MLA-6, MLA-8 et MLB-8 pôles

Hauteurs d'axe 280 à 450 : nous consulter

Autres dimensions : identiques moteurs Process Performance gamme

fonte, hauteurs d'axe 180 à 250

Ventilation forcée (ventilateur axial, C.O.C.) pour moteurs fonte (code option 183)

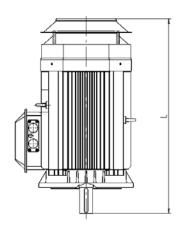
Hauteur d'axe moteur principal	Type motoventilateur (à 50 Hz)	Code produit	kW
M3BP 160 - 200	M2AA 63, 4 pôle, B4	3GGA 062 002-C*C	0.18
M3BP 225 - 250	M2AA 63, 4 pôle, B4	3GAA 062 002-C*C	0.18
M3BP 280 - 315 SM/ML	M3AA 80, 4 pôle, D4	3GAA 082 314-C*E	0.75
M3BP 315 LK - 355 SM	M3AA 90, 4 pôle, LD4	3GAA 092 315-C*E	1.5
M3BP 355 ML - 450 L	M3AA 100, 4 pôle, LD4	3GAA 102 314-C*E	3.0

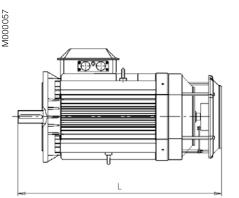
^{* =} code de tension et fréquence

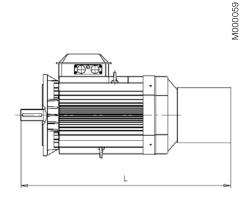
Ventilation forcée (ventilateur sur le dessus ou le côté) pour moteur fonte (code option 422)

Hauteur d'axe moteur principal	Type motoventilateur (à 50 Hz)	Code produit	kW
M3BP 280 - 315	M3AA 90 LB, 2 pôle, B5	3GAA 091 313-B*E	2.2
M3BP 355 - 450 L	M3AA 100 LB, 2 pôle, B5	3GAA 101 312-B*E	3.0

^{* =} code de tension et fréquence


²⁾ MLD-2, MLE-2, MLB-4, MLC-4, MLD-4, MLB-6, MLC-6 et MLC-8 pôles


Capot de protection et entraînements à vitesse variable


Capot de protection Code option 005

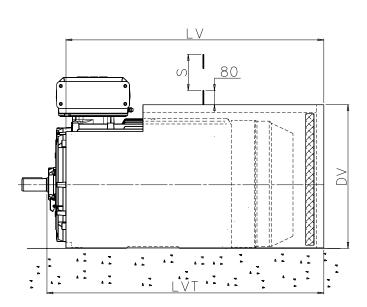
Codeur Codes options 472, 473, 572 et 573

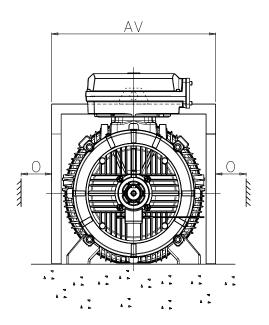
Ventilation forcée avec ou sans codeur Codes options 183, 474, 476, 477, 189, 574, 576 et 577

Codes options		005	183	189	472, 473 572, 573, 658	474, 476 477, 574 576, 577
Hauteur d'axe	Nbre de pôles	L	L	L	L	L
160 ¹⁾	2-8	635	996	851	668	996
160 ²⁾	2-8	732	1093	948	763	1093
180	2-8	779	1142	995	811	1143
200	2-8	875	1273	1129	918	1274
225	2	902	1308	1158	945	1307
225	4-8	932	1338	1188	975	1337
250	2-8	937	1351	1203	981	1351
280SM_	2	1190	1472	NA	1184	1620
	4-12	1190	1472	NA	1184	1620
315SM_	2	1290	1552	NA	1268	1708
	4-12	1320	1582	NA	1298	1738
315ML_	2	1400	1662	NA	1378	1820
	4-12	1430	1692	NA	1408	1850
315LK_	2	1561	1920	NA	1584	2054
	4-12	1591	1950	NA	1614	2084
355SM_	2	1513	1835	NA	1504	1963
	4-12	1583	1905	NA	1574	2033
355ML_	2	1618	1986	NA	1609	2119
	4-12	1688	2056	NA	1679	2189
355LK_	2	1881	2236	NA	1899	2409
	4-12	1951	2306	NA	1929	2439
400L/LK	2	1968	2313	NA	1946	2435
	4-12	2008	2353	NA	1986	2475
450L_	2	2362	2530	NA	2260	2530
	4-12	2402	2570	NA	2300	2570

 $^{^{\}mbox{\tiny 1)}}$ 2 pôles, MLA 4- et 6 pôles, MLA et MLB-8 pôles.

N.B.: Dimensions pour moteurs avec codes options 659 et 660: nous consulter

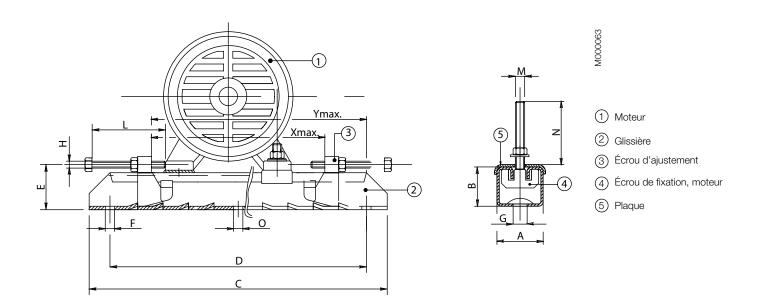

²⁾ Puissance augmentée, MLB 6 pôles, MLC 8 pôles


Capot anti-bruit pour moteurs de hauteurs d'axe 280 à 450

Les moteurs à pattes et/ou à bride peuvent être équipés d'un capot anti-bruit qui réduit le niveau sonore d'environ 5-6 dB(A). Le capot de couleur bleue est en tôle d'acier de 2 mm d'épaisseur. Le matériau anti-bruit est une mousse polyuréthane de 40 mm d'épaisseur. Une bande de caoutchouc placée dans le bas du capot assure le contact avec le sol. Il se pose sans fixation sur le moteur.

Dimensions des capots anti-bruit pour moteurs à pattes

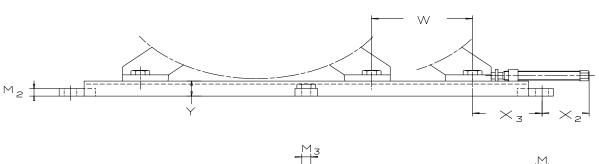
Capot anti-bruit pour moteurs à bride : nous consulter.

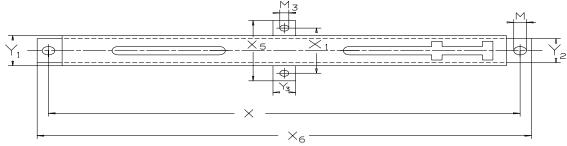

Hauteur	AV	LV	LVT	DV	O 1)	S 2)	Masse	
d'axe							kg	
280SM_	681	1010	1090	616	50	762	38	
315 SM_	760	1094	1191	697	60	852	47	
315 ML_	760	1205	1302	697	60	852	51	
315 LK_	760	1411	1508	697	60	852	58	
355 SM_	850	1335	1441	777	65	958	62	
355 ML_	850	1440	1546	777	65	958	67	
355 LK_	850	1690	1796	777	65	958	77	
400 L_	938	1750	1873	866	75	1045	88	
400 LK_	938	1750	1873	866	75	1045	88	
450 L_	1050	2110	2230	990	80	1045	120	

¹⁾ Intervalle mini à prévoir pour refroidissement du moteur

N.B.: Dimensions des capots anti-bruit pour hauteurs d'axe inférieures : nous consulter

 $^{^{2)}}$ Intervalle mini à prévoir pour retirer le capot anti-bruit

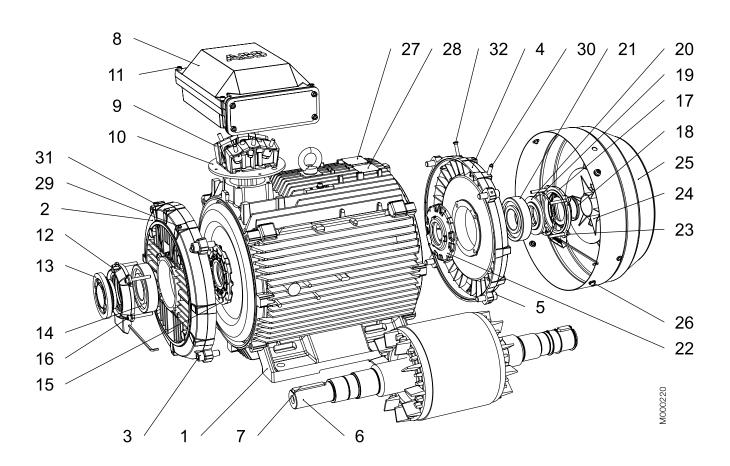

Glissières pour moteurs de hauteurs d'axe 160 à 250



Hauteur d'axe	Туре	Code produit 3GZV103001-	Α	В	С	D	E	F	G	Н	L	М	N	0	Xmaxi	Ymaxi	Masse kg
Hauteurs o	d'axe 71 à 10	0 : nous consu	lter														
160-180	TT180/12	-14	75	42	700	630	57	17	26	M12	120	M12	50	-	520	580	12.0
200-225	TT225/16	-15	82	50	864	800	68	17	27	M16	140	M16	65	17	670	740	20.4
250	TT280/20	-16	116	70	1072	1000	90	20	27	M18	150	M20	80	20	870	940	43.0

Chaque jeu contient 2 glissières coulissantes complètes avec vis pour le montage du moteur. Les vis de montage des glissières sur la base ne sont pas incluses. Les glissières coulissantes sont fournies avec des surfaces inférieures non usinées. Elles doivent donc être soutenues de manière adéquate avant serrage.

Glissières pour moteurs de hauteurs d'axe 280 à 450



Туре	Hauteur	М	M2	МЗ	W	х	X1	X2	ХЗ	X5	X6	Y	Y1	Y2	Y3	Masse/
	d'axe				maxi			maxi	mini							glissière kg
ZHKJ 50	280	28	25	20	135	850	150	125	135	200	900	50	100	80	50	14.5
ZHKJ 63	315	28	25	20	220	1040	150	125	150	200	1090	50	100	80	50	17.5
ZHKJ 71 1)	355	33	30	20	275	1260	190	145	185	240	1320	60	140	120	50	31.0
ZHKJ 71 1)	400	33	30	20	180	1260	190	140	200	240	1320	60	140	120	50	31.0
ZHKJ 90	450	28	30	28	260	1420	240	140	210	300	1480	70	180	158	60	61.0

¹⁾ Pour montage au plafond ou mural, nous consulter.

Chaque jeu contient 2 glissières coulissantes complètes avec vis pour le montage du moteur. Les vis de montage des glissières sur la base ne sont pas incluses. Les glissières coulissantes sont fournies avec des surfaces inférieures non usinées. Elles doivent donc être soutenues de manière adéquate avant serrage.

Moteurs Process Performance BT et Premium BT • gamme fonte Vue éclatée des moteurs fonte, hauteur d'axe 315

- 1 Stator
- 2 Flasque, côté commande
- 3 Vis du flasque, côté commande (C.C.)
- 4 Flasque, côté opposé commande (C.O.C.)
- 5 Vis du flasque, côté opposé commande
- 6 Rotor avec arbre
- 7 Clavette, côté commande
- 8 Boîte à bornes
- 9 Plaque à bornes
- 10 Plaque intermédiaire
- 11 Vis du couvercle de la boîte à bornes
- 12 Couvercle de roulements externe, côté commande
- 13 Joint sur bout d'arbre avec joint labyrinthe côté commande ; en standard dans moteurs 2 pôles (joint V-ring dans 4-8 pôles)
- 14 Roulement côté commande
- 15 Couvercle de roulements interne, côté commande
- 16 Vis du couvercle de roulements, côté commande
- 17 Couvercle de roulements externe, côté opposé commande

- 18 Joint, côté opposé commande
- 19 Rondelle élastique
- 20 Joint sur bout d'arbre, côté opposé commande
- 21 Roulement côté opposé commande
- 22 Couvercle de roulements interne, côté opposé commande
- 23 Vis du couvercle de roulements, côté opposé commande
- 24 Ventilateur
- 25 Capot du ventilateur
- 26 Vis du capot du ventilateur
- 27 Plaque signalétique
- 28 Plaque de lubrification
- 29 Graisseur, côté commande
- **30** Graisseur, côté opposé commande
- 31 Prise pour capteur de vibration (SPM) C.C.
- 32 Prise pour capteur de vibration (SPM) C.O.C.

Moteurs Process Performance BT et Premium BT • gamme fonte Tableau récapitulatif

Hauteur d'axe		71	80	90	100	112	132	
Carcasse	Matière	Fonte EN-GJL	150/GG 15/GF	RS 150				
	Couleur	Bleue, Munse	II 8B 4.5/3.25 / N	NCS 4822 B050	à			
	Traitement de surface	C3 Medium s	elon ISO/EN 129	44-2				
Pattes		Fonte EN-GJL	150/GG 15/GF	RS 150, intégrée	s au stator			
Flasques paliers	Matière	Fonte EN-GJL	150/GG 15/GF	RS 150				
	Couleur	1,	II 8B 4.5/3.25 / N		à			
	Traitement de surface	C3 Medium se	elon ISO/EN 129	44-2				
Roulements	C.C.	6303-2Z/C3	6304-2Z/C3	6305-2Z/C3	6306-2Z/C3	6306-2Z/C3	6308-2Z/C3	
	C.O.C.	6202-2Z/C3	6203-2Z/C3	6204-2Z/C3	6205-2Z/C3	6205-2Z/C3	6208-2Z/C3	
Point fixe	Couvercle de roulements	En standard, p	point fixe côté co	ommande (C.C.)	l			
Joints d'étanchéité	C.C.	Joint à lèvres	en standard, join	t radial sur dem	ande			
	C.O.C.	Joint labyrinth	е					
Lubrification		Roulements g	raissés à vie					
		Plage de temp	pérature de la gra	aisse -40 à +16	0 °C			
Plaque signalétique	Matière	Aluminium						
Boîte à bornes	Matière	Fonte EN-GJL-150/GG 15/GRS 150						
	Traitement de surface		elon ISO/EN 129					
	Visserie	- 1	ètement zinc et c		ns Cr VI			
Raccordements	Entrées de câbles	2xM16	2xM25		2xM32			
	Section Cu maxi (mm²)	4	6		10			
	Bornes	Cosses de câ	ble, 6 bornes		· i			
Ventilateur	Matière	Polypropylène	e. 20 % armé fibr	e de verre				
Capot du ventilateur	Matière	Acier						
	Couleur	Bleue, Munse	II 8B 4.5/3.25 / N	NCS 4822 B050	3	•••	•	
	Traitement de surface	C3 Medium se	elon ISO/EN 129	44-5		••••		
Bobinage stator	Matière	Cuivre						
	Isolation	Isolation class	e F. Echauffeme	nt classe B, sau	f spécification c	ontraire		
	Protection	Sondes PTC	150 °C					
Rotor	Matière	Alliage d'alum	inium coulé sous	s pression				
Equilibrage		Demi-clavette	en standard					
Clavette		Rainure de cla	avette fermée					
Résistances de réchauffage	Sur demande	8 W	25 W					
Trous de purge		Standards, av	ec bouchons pla	astique, ouverts	à la livraison			
Degré de protection		IP 55, protecti	ion renforcée sur	demande				
Mode de refroidissement		IC 411						

Moteurs Process Performance BT et Premium BT • gamme fonte Tableau récapitulatif

Hauteur d'axe		160	180	200	225	250		
Carcasse	Matière	Fonte EN-GJL-200/G	G 20/GRS 200	:	:			
	Couleur	Bleue, Munsell 8B 4.5	5/3.25 / NCS 4822 B0	5G				
	Catégorie de corrosivité	C3 Medium selon IS0	O/EN 12944-5					
Flasques paliers	Matière	Fonte EN-GJL-200/G	G 20/GRS 200					
	Couleur	Bleue, Munsell 8B 4.5	5/3.25 / NCS 4822 B0	5G				
	Catégorie de corrosivité	C3 Medium selon IS0	O/EN 12944-5					
Roulements	C.C.	6309/C3	6310/C3	6312/C3	6313/C3	6315/C3		
	C.O.C.	6209/C3	6209/C3	6210/C3	6212/C3	6213/C3		
Point fixe	Couvercle de roulements	En standard, point fi	xe côté commande (C.C.)				
Joints d'étanchéité		Joint axial en standard	d, joint radial sur dema	ande				
Lubrification		Roulements équipés o	de graisseurs M6x1					
Prise pour capteur de vibration (SPM)		En standard	En standard					
Plaque signalétique	Matière	Acier inoxydable, SS-EN 10088, 0,5 mm						
Boîte à bornes	Matière corps	Fonte EN-GJL-200/G	G 20/GRS 200					
	Matière couvercle	Fonte EN-GJL-200/G	G 20/GRS 200	•••••		•		
	Matière visserie couvercle	Acier 8.8, revêtement	zinc et chromé		•	• • • • • • • • • • • • • • • • • • • •		
Raccordements	Entrées de câbles	2xM40, 1xM16		2xM63, 1xM16				
	Bornes	6 bornes pour raccord	dement par cosses de	câble (non fournies)				
	Presse-étoupes	Entrées de câbles en	standard, presse-étou	pes en option				
Ventilateur	Matière	Polypropylène. 20 %	armé fibre de verre					
Capot du ventilateur	Matière	Acier galvanisé à chau	hq					
	Couleur	Bleue, Munsell 8B 4.5	5/3.25 / NCS 4822 B0	5G				
	Catégorie de corrosivité	C3 Medium selon IS0	O/EN 12944-5		-	•		
Bobinage stator	Matière	Cuivre						
	Isolation	Isolation classe F						
	Protection	3 sondes PTC en star	ndard, 150 °C					
Rotor	Matière	Alliage d'aluminium co	oulé sous pression					
Equilibrage		Demi-clavette en stan	dard					
Clavette		Rainure de clavette fe	rmée					
Résistances de réchauffage	Sur demande	25 W	50 W	50 W	50 W	50 W		
Trous de purge		Standards, avec bouc	chons plastique, ouver	ts à la livraison	<u> </u>	<u> </u>		
Degré de protection		IP 55, protection renfo	orcée sur demande					
Mode de refroidissement		IC 411						

Moteurs Process Performance BT et Premium BT • gamme fonte Tableau récapitulatif

Hauteur d'axe		280	315	355	400	450				
Carcasse	Matière	Fonte EN-GJL-200/G	G 20/GRS 200							
	Couleur	Bleue, Munsell 8B 4.5		305G / RAL 5014						
	Catégorie de corrosivité	C3 Medium selon ISC)/EN 12944-5							
Flasques paliers	Matière	Fonte EN-GJL200/GG20/GRS 200, EN-GLJ-250 /GG25/GRS 250, EN-GJS-400/GG40/GRP 400								
	Couleur	Bleue, Munsell 8B 4.5	5/3.25 / NCS 4822 E	305G / RAL 5014						
	Catégorie de corrosivité	C3 Medium selon ISC)/EN 12944-5							
Roulements	C.C.c 2 pôles	6316/C3	6316/C3	6316M/C3	6317M/C3	6317M/C3				
	4-12 pôles	6316/C3	6319/C3	6322/C3	6324/C3	6326M/C3				
	C.O.C. 2 pôles	6316/C3	6316/C3	6316M/C3	6317M/C3	6317M/C3				
	4-12 pôles	6316/C3	6316/C3	6316/C3	6319/C3	6322/C3				
Point fixe	Couvercle de roulements	En standard, point fi	xe côté commande	e (C.C.)						
Joints d'étanchéité		Joint V-ring ou labyrin								
		Cf. chapitre sur joints	de roulements mote	eurs Process et mo	teurs Process Premiur	m				
Lubrification		Roulements équipés (de graisseurs M10x ⁻	1						
Prise pour capteur de vibration (SPM)		En standard								
Plaque signalétique	Matière	Acier inoxydable, EN	10088, épaisseur 0,	5 mm						
3oîte à bornes	Matière corps	Fonte EN-GJL-250/G	G 25/GRS 250							
	Matière couvercle	Fonte EN-GJL-250/G	G 25/GRS 250			Acier				
	Matière visserie couvercle	Acier 8.8, revêtement	zinc et chromé jaun	ne						
Raccordements	Entrées de 2, 4 pôles	2xM63	*) 2xM63	*) 2xØ60/80	*) 2xØ80	*) 2xØ60/80				
	câbles 6 pôles	ZXIVIOS) ZXIVIOS	*) 2xØ60	*) 2xØ60/80) 2x000/80				
			*) Pour des détails,	cf. chapitre sur les	s variantes des boîtes a	à bornes				
	Bornes	6 bornes pour raccord	dement par cosses	de câble (non four	nies)					
	Presse-étoupes	En standard								
/entilateur	Matière	Plastique ou aluminiu	m, 20 % armé fibre d	de verre						
Capot du ventilateur	Matière	Acier								
	Couleur	Bleue, Munsell 8B 4.5	5/3.25 / NCS 4822 E	305G / RAL 5014	·······	······				
	Catégorie de corrosivité		•							
Bobinage stator	Matière	Cuivre								
5	!	 	·							
	Isolation	Isolation classe F				······································				
	Isolation Protection	3 sondes PTC en star	ndard, 155 °C	····						
Rotor		 	<u> </u>							
	Protection	3 sondes PTC en star	oulé sous pression							
Equilibrage	Protection	3 sondes PTC en star Alliage d'aluminium co	oulé sous pression							
Equilibrage Clavette	Protection Matière	3 sondes PTC en star Alliage d'aluminium co Demi-clavette en stan	oulé sous pression	2x65 W	2x65 W	2x100 W				
Equilibrage Clavette Résistances de réchauffage	Protection Matière	3 sondes PTC en star Alliage d'aluminium co Demi-clavette en stan Rainure de clavette de	oulé sous pression dard ébouchante 2x65 W		2x65 W	2x100 W				
Rotor Equilibrage Clavette Résistances de réchauffage Trous de purge Degré de protection	Protection Matière	3 sondes PTC en star Alliage d'aluminium co Demi-clavette en stan Rainure de clavette de 60 W	oulé sous pression idard ébouchante 2x65 W chons plastique, ouv		2x65 W	2x100 W				

Moteurs Process Performance BT - IE2 Gamme aluminium

Moteurs asynchrones triphasés fermés BT Hauteurs d'axe 63 à 280 Puissances 0,09 à 90 kW

www.abb.com/motors&generators

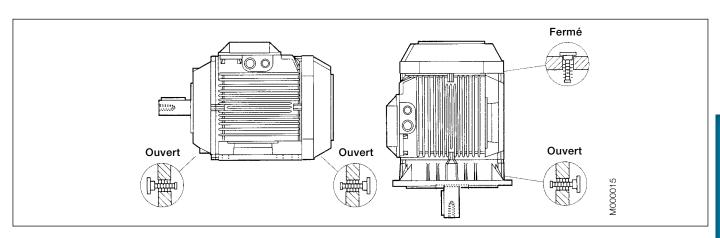
Conception mécanique

Stator

Le bâti du stator est en alliage d'aluminium. Les pattes des hauteurs d'axe 63 et 180 sont en aluminium et celles des hauteurs d'axe 200 à 280 en fonte.

Les flasques-paliers des hauteurs d'axe 160 à 280 sont en

Trous de purge


Les moteurs destinés à fonctionner dans des environnements fortement humides, et plus particulièrement en service intermittent, doivent être dotés de trous de purge. La désignation IM (ex., IM 3031) spécifie la forme de montage du moteur.

Les moteurs comportent des trous de purge obturés par des bouchons (cf. schéma ci-dessous) ouverts à la livraison. Au moment du montage des moteurs, vérifiez que ces trous de purge sont bien dirigés vers le bas. En cas de montage à arbre vertical, le bouchon supérieur doit être

complètement enfoncé au moyen d'un marteau. Dans des environnements très poussiéreux, les deux bouchons devront être complètement enfoncés.

Les moteurs sont fournis avec des trous de purge à la fois côté commande (C.C.) et côté opposé commande (C.O.C.).

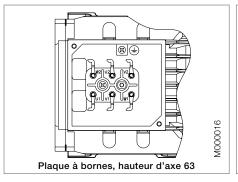
Lorsque le mode de montage diffère de celui du moteur à pattes IM B3, la commande doit préciser le code option 066 Cf. codes options 065, 066 et 076 sous "Trous de purge".

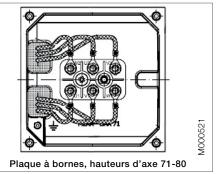
Boîte à bornes

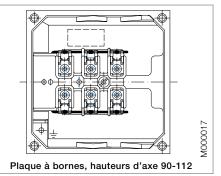
Hauteurs d'axe 63-180

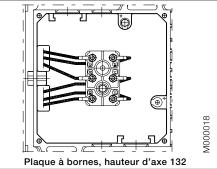
La boîte à bornes est en alliage d'aluminium et montée sur le dessus du stator. Sa partie inférieure est intégrée au stator. Elle possède deux ouvertures prédéfonçables sur chaque côté. Les hauteurs d'axe 132 SM_ et 160-180 possèdent également une troisième ouverture plus petite. Les presseétoupes ne sont pas inclus.

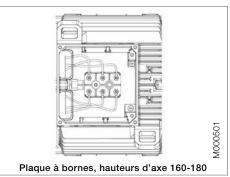
Hauteurs d'axe 200-280

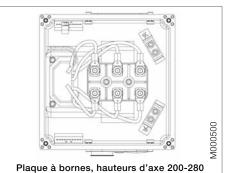

La boîte à bornes et le couvercle sont en acier embouti et montés sur le dessus du stator. La boîte à bornes est boulonnée sur le stator et n'est pas réorientable. Sa taille est la même pour tous les moteurs.


La boîte à bornes de la série normalisée est dotée de deux passages brides FL 13, un de chaque côté. Le passage de droite, vu côté commande, est doté d'une bride avec 2 perçages pour presse-étoupes M40. A la livraison, ces perçages sont obturés par des boutons de plastique.


Les presse-étoupes ne sont pas fournis. Le passage de l'autre côté possède une bride-couvercle.


Les moteurs peuvent également être fournis avec une boîte à bornes de très grand format (en standard pour le code de tension S et la hauteur d'axe 280). Cf. code option 019 sous "Boîtes à bornes". La cote HD est alors augmentée de 32 mm. La boîte à bornes possède deux ouvertures FL 21. Celle de droite est dotée d'une bride avec 2 perçages pour presse-étoupes M63. Les perçages sont obturés par des boutons de plastique. Les presse-étoupes ne sont pas fournis. Le passage de l'autre côté possède une bridecouvercle. La boîte à bornes peut également être fournie avec un passage FL 13 vers le côté opposé commande.


Lorsque des moteurs neufs sont fabriqués, la boîte à bornes peut être montée sur le côté gauche ou droit. Cf. codes options 021 et 180 sous "Boîtes à bornes".



Raccordements

La plaque à bornes comporte 6 bornes pour le raccordement de câbles cuivre (Cu). Les bornes sont repérées conformément à la norme IEC 60034-8.

Passages pour câbles

Hauteur d'axe	Passage	Entrée de câbles, pas métrique	Mode de raccordement	Taille borne	Section maxi des câbles Cu, mm²
63	Ouverture prédéfonçable	1 x M16 x 1.5 1 x Pg 11	Cosse de câble	M4	2.5
71-80	Ouverture prédéfonçable	2 x (2 x M20)	Cosse de câble	M4	4
90-112	Ouverture prédéfonçable	2 x (M25 + M20)	Borne à vis	M4	6
132 1)	Ouverture prédéfonçable	2 x (M25 + M20)	Cosse de câble	M5	10
132 ²⁾	Ouverture prédéfonçable	2 x (M40 x M32 + M12)	Cosse de câble	M6	35
160-180	Ouverture prédéfonçable	2 x (2 x M40 + M16)	Cosse de câble	M6	35
200-250	2 x FL 13	1 x (2 x M40 + M16)	Cosse de câble	M10	70
280	2 x FL 21	1 x (2 x M63 + M16)	Cosse de câble	M10	70

¹⁾ Tous les types sauf 2)

Dimensions de la boîte à bornes

Code 019 Boîte à bornes de taille supérieure au format standard

Code 467 Boîte à bornes plus basse que format standar	d
sans borne à vis ; câble de 2 m inclus	

Hauteur	Dimensions								
d'axe		AD	HB	HD	HE				
МЗАА	200 ML.	332.5	332.5	603	240				
МЗАА	225 SM.	353	353	578	260.5				
МЗАА	250 SM.	376	376	626	283.5				

Hauteur		Dimensions							
d'axe		AD	HB	HD	HE				
МЗАА	200 ML.	332.5	332.5	603	240				
МЗАА	225 SM.	353	353	578	260.5				
МЗАА	250 SM.	376	376	626	283.5				

Code 021 Boîte à bornes sur le côté gauche (vue C.C.) Code 180 Boîte à bornes sur le côté droit (vue C.C.)

Hauteur	Dimensions									
d'axe		AD	HB	HD	HE					
МЗАА	200 ML.	332	332	532	239					
МЗАА	225 SM.	354	354	579	260.5					
МЗАА	250 SM.	377	377	627	284					

Hauteur	Dimensions			
d'axe	AD	НВ	HD	
160		211.5	371.5	
180		226.5	406.5	
200 ML.	248	248	448	
225 SM.	269	269	494	
250 SM.	292	292	542	
280	292	292	572	

²⁾ SM_

Roulements

Les moteurs sont dotés de roulements tels que décrits dans les tableaux ci-dessous.

Des charges axiales supérieures sont tolérées si les moteurs sont dotés de roulements à billes à contact oblique. Dans ce cas, vous noterez que les charges axiales ne doivent être appliquées que dans un seul sens.

Série normalisée avec roulements à billes

Hauteu	ır	Moteur à pattes et à bride	е
d'axe		C.C.	C.O.C.
63		6202-2Z/C3	6201-2Z/C3
71		6203-2Z/C3	6202-2Z/C3
80		6204-2Z/C3	6203-2Z/C3
90		6205-2Z/C3	6204-2Z/C3
100		6306-2Z/C3	6205-2Z/C3
112		6306-2Z/C3	6205-2Z/C3
132 1)		6208-2Z/C3	6206-2Z/C3
132 2)		6308-2Z/C3	6206-2Z/C3
160		6309-2Z/C3	6209-2Z/C3
180		6310-2Z/C3	6209-2Z/C3
200		6312-2Z/C3	6210-2Z/C3
225		6313-2Z/C3	6212-2Z/C3
250		6315-2Z/C3	6213-2Z/C3
280	2 pôles	6315/C3	6213/C3
280	4-8 pôles	6316/C3	6213/C3

¹⁾ Tous les types sauf 2)

Les moteurs équipés de roulements à rouleaux tolèrent des charges radiales plus élevées.

Autre série :

Série avec roulements à rouleaux

Nous préconisons l'utilisation de roulements à rouleaux pour les entraînements à courroies utilisant des moteurs de hauteurs d'axe de 160 à 280.

Cf. code option 037 sous "Roulements et lubrification".

Hauteu	ır		
d'axe		C.C.	C.O.C.
90		NU 205	-
100		NU 306	-
112		NU 306	-
132 ¹)		NU 208	-
132 2)		NU 308	_
160		NU 309 ECP	-
180		NU 310 ECP	_
200		NU 312 ECP	_
225		NU 313 ECP	_
250		NU 315 ECP	_
280	2 pôles	NU 315 ECP	_
280	4-8 pôles	NU 316 ECP	_

¹⁾ Tous les types sauf 2)

Série à roulements à billes à contact oblique

Cf. codes options 058 et 059 sous "Roulements et lubrification".

Hauteur d'axe		C.C. 058	C.O.C. 059
90		7205 B	7204 B
100		7306 B	7205 B
112		7306 B	7205 B
132 1)		7208 B	7206 B
132 ²⁾		7308 B	7206 B
160		7309 BEP	7209 BEP
180		7310 BEP	7209 BEP
200		7312 BEP	7210 BEP
225		7313 BEP	7212 BEP
250		7315 BEP	7213 BEP
280	2 pôles	7315 BEP	7213 BEP
280	4-8 pôles	7316 BEP	7213 BEP

 $^{^{\}rm 1)}$ Tous les types sauf $^{\rm 2)}$

²⁾ SM_

²⁾ SM_

Dispositif de blocage rotor (pour le transport)

Le rotor des moteurs équipés de roulements à rouleaux ou à billes à contact oblique est immobilisé par un dispositif spécial qui protège les roulements des vibrations pendant le transport.

Point fixe

Le tableau ci-dessous précise quels roulements du moteur sont bloqués axialement. Hauteurs d'axe 63 à 80 : le point fixe est réalisé par un anneau de blocage interne. Hauteurs d'axe 90 à 280 : il est réalisé par un couvercle de roulement. Cf. code option 042 sous «Roulements et lubrification».

Hauteur	Moteurs à pattes	Moteurs à bride		
d'axe		Trous lisses	Trous taraudés	
63	C.C. sur demande	C.C. sur demande	C.C. sur demande	
71-132	C.C. 1)	C.C. 1)	C.C. 1)	
160-280	C.C.	C.C.	-	

¹⁾ Une rondelle élastique côté opposé commande (C.O.C.) pousse le rotor vers le côté commande (C.C.).

Lubrification

A la livraison, les moteurs sont lubrifiés avec une graisse pour une exploitation en atmosphères sèches ou humides à des températures ambiantes de 40 °C et, dans certains cas, supérieures à 40 °C (cf. tableau 1 page suivante).

Les hauteurs d'axe 63 à 250 sont fournies avec des roulements protégés. En option, les hauteurs d'axe 90 à 250 peuvent être équipées de roulements avec graisseurs, cf. code option 041 sous «Roulements et lubrification».

Les moteurs de hauteur d'axe 280 sont équipés, en standard, de graisseurs.

L'intervalle de lubrification L, adapté aux roulements regraissables, correspond au nombre d'heures de fonctionnement au cours desquelles la fiabilité de 99 % des roulements est assurée.

Les intervalles de lubrification et les quantités de graisse sont spécifiés sur une plaque du moteur de même que dans le manuel fourni avec le moteur.

La durée de vie de la graisse L₁₀, pour les roulements graissés à vie, correspond au nombre d'heures au terme desquelles 90 % des roulements continuent d'être correctement lubrifiés ; 50 % des roulements doublent cette valeur. La durée de vie maximale à retenir se situe, néanmoins, autour à 40 000 heures.

En cas de températures ambiantes élevées, les charges sur l'arbre doivent être réduites par rapport aux valeurs admissibles du tableau (cf. pages 88 et 89). Contactez ABB.

Tableau 1 : durée de vie de la graisse $L_{\scriptscriptstyle 10}$ des roulements à billes de type 2Z des moteurs à arbre horitontal fonctionnant en service continu.

					Températur	e ambiante	et puissar	ice assigné				
												°C
												Série PA
												9000
												9000
												9000
	···•····	*	• • • • • • • • • • • • • • • • • • • •		• · · · · · · · · · · · · · · · · · · ·			•••••••••		• • • • • • • • • • • • • • • • • • • •	•	9000
												8000
												9000
												9000
···•····	***************************************	•••••	• · · · · · · · · · · · · · · · · · · ·		• · · · · · · · · · · · · · · · · · · ·			••••••••••		• • • • • • • • • • • • • • • • • • • •	•	9000
												7000
												9000
												9000
		•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •	•	9000
												6000
												9000
												9000
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		• · · · · · · · · · · · · · · · · · · ·			•••••••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	9000
												4000
												9000
												9000
	···•····	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •	•	9000
												4000
												9000
												9000
····		•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			•••••••••••••••••••••••••••••••••••••••		• • • • • • • • • • • • • • • • • • • •	• · · · · · · · · · · · · · · · · · · ·	9000
												4000
												7000
												9000
		•	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• · · · · · · · · · · · · · · · · · · ·	9000
												3000
												7000
												9000
····		•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•	9000
												2000
												10000
		40000		40000		40000		40000		24000		12000
······		20000	• • • • • • • • • • • • • • • • • • • •	20000	• • • • • • • • • • • • • • • • • • • •	22000		00000		10000	• · · · · · · · · · · · · · · · · · · ·	7000
												7000
												3000
		40000		40000		40000		40000		24000		12000
···•······		27000	• • • • • • • • • • • • • • • • • • • •	27000	•	18000		10000		5000	•	3000
												3000
												10000 17000
		40000		40000		40000		40000		30000		17000
		22000	• • • • • • • • • • • • • • • • • • • •	18000	•	10000		6000		3000	•	1000
												1000
												3000
		40000		40000		40000		40000		40000		27000
		16000	• • • • • • • • • • • • • • • • • • • •	12000	•	7000		4000		2000	•	1000
												1000
1500	40000	40000	40000	39000	40000	21000	40000	11000	33000	6000	19000	3000
1000	40000	40000	40000	40000	40000	40000	40000	40000	40000	25000	36000	13000
	tr/min 3000 1500 1000 750 3000	tr/min Série N³ 3000 40000 1500 40000 1500 40000 750 40000 3000 40000 1500 40000 1500 40000 3000 40000 1500 40000 1500 40000 1500 40000 3000 40000 1500 40000 1500 40000 1500 40000 3000 40000 1500 40000 1500 40000 1500 40000 3000 40000 1500 40000 1500 40000 1500 40000 1500 40000 1500 40000 1500 40000 1500 40000 1500 40000 1500 40000 1500 40000 1500 40000	3000 40000 40000 1500 40000 40000 1500 40000 40000 1000 40000 40000 3000 40000 40000 1500 40000 40000 1500 40000 40000 750 40000 40000 3000 40000 40000 1500 40000 40000 1500 40000 40000 1500 40000 40000 3000 40000 40000 1500 40000 40000 1500 40000 40000 1500 40000 40000 3000 40000 40000 1500 40000 40000 1500 40000 40000 1500 40000 40000 1500 40000 40000 1500 40000 40000 1500 40000 40000 1500 4	tr/min Série N³ Série PA³ Série N³ 3000 40000 40000 40000 1500 40000 40000 40000 1500 40000 40000 40000 750 40000 40000 40000 3000 40000 40000 40000 1500 40000 40000 40000 1500 40000 40000 40000 1500 40000 40000 40000 1500 40000 40000 40000 1500 40000 40000 40000 1500 40000 40000 40000 1500 40000 40000 40000 1500 40000 40000 40000 1500 40000 40000 40000 1500 40000 40000 40000 3000 40000 40000 40000 1500 40000 40000 40000 1500 40000 <td>tr/min Série № 3 Série PA³0 Série № 3 Série PA³0 3000 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 750 40000 40000 40000 40000 3000 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 3000 40000 40000 40000 40000 3000 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500<td>tr/min Série N³ Série PA³ Série N³ Série PA³ MO000 40000</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td></td>	tr/min Série № 3 Série PA³0 Série № 3 Série PA³0 3000 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 750 40000 40000 40000 40000 3000 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 3000 40000 40000 40000 40000 3000 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 40000 40000 40000 40000 1500 <td>tr/min Série N³ Série PA³ Série N³ Série PA³ MO000 40000</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td>	tr/min Série N³ Série PA³ Série N³ Série PA³ MO000 40000						

<sup>Tous les types sauf 2
SM_
SSME
Série N : série normalisée
Série PA : série puissance augmentée
Moteurs à arbre vertical : la durée de vie de la graisse est divisée par deux. Puissances sans valeurs dans le tableau : contactez ABB. Les applications correspondantes peuvent réduire la durée des roulements et du bobinage. Moteurs à roulements à rouleaux (option) : la durée de vie de la graisse est beaucoup plus courte.

Pour un service continu, des graisseurs doivent être envisagés.</sup>

Intervalles de lubrification

Pour les intervalles de lubrification, ABB applique le principe de durée de vie L, (fiabilité des roulements assurée sur 99 % des moteurs au cours de l'intervalle). Les intervalles de lubrification peuvent également être calculés selon le principe $L_{_{10}}$ qui sont le double des valeurs $L_{_{1}}$. Les valeurs sont disponibles auprès d'ABB sur demande.

Les tableaux suivants donnent les intervalles de lubrification

Hauteu	Quantité r de graisse	3600	3000	1800	1500	1000	500-750
d'axe	g/roulement	tr/min	tr/min	tr/min	tr/min	tr/min	tr/min
Roulem	ents à billes :	intervalle	es de lubr	ification h	rs/fonctio	nnement	
280	60	2000	3500	-	-	-	-
280	70	-	-	8000	10500	14000	17000

selon le principe L1 pour différentes vitesses. Ces valeurs s'appliquent aux moteurs à arbre horizontal (B3) avec une température des roulements d'environ 80 °C et en utilisant une graisse de qualité supérieure à base de savon complexe au lithium et aux minéraux ou d'huile PAO.

Pour en savoir plus, cf. manuel des moteurs BT ABB.

Hauteur	Quantité de graisse	3600	3000	1800	1500	1000	500-750
d'axe	g/roulement	tr/min	tr/min	tr/min	tr/min	tr/min	tr/min
Rouleme	nts à rouleau	ıx : interva	ılles de lu	brificatio	n hrs/fon	ctionne	ment
280	60	1000	1750	-	-	-	_
280	70	-	_	4000	5250	7000	8500

Diamètre de la poulie

Une fois la durée de vie des roulements déterminée, le diamètre mini admissible de la poulie peut être calculé en utilisant F_R comme suit:

$$D = \frac{1.9 \cdot 10^7 \cdot K \cdot P}{n \cdot F_R}$$

avec:

D =diamètre de la poulie, mm P= puissance requise, kW vitesse moteur, tr/min n =

facteur de tension de la courroie, varie selon le type de courroie et le service type. Valeur courante pour les

courroies trapézoïdales : 2,5

effort radial admissible (cf. tableaux) $F_{R} =$

Durée de vie des roulements

La durée de vie normale d'un roulement correspond au nombre d'heures de fonctionnement atteint ou dépassé par 90 % des roulements identiques testés dans des conditions spécifiques. 50 % des roulements atteignent au moins cinq fois cette durée de vie.

Cette durée de vie dépend de nombreux facteurs comme la charge appliquée, la vitesse du moteur, la température de fonctionnement et la pureté de la graisse. Les charges radiales et axiales admissibles pour les différentes hauteurs d'axe sont reprises dans les tableaux des pages suivantes.

Les valeurs des tableaux s'appliquent à 50 Hz. A 60 Hz et/ ou pour des durées de vie des roulements autres que celles des tableaux, les valeurs changent conformément au tableau ci-contre.

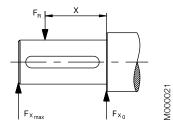
Les valeurs du tableau supposent soit des efforts radiaux, soit des efforts axiaux. En cas d'efforts radiaux et axiaux simultanés, contactez ABB. De même, on suppose que les efforts radiaux sont appliqués sur le bout de l'arbre moteur.

Charge admissible avec modification de la durée de vie du roulement et à fréquence réseau de 50 Hz et 60 Hz

Durée de	vie en heures	
		Charge admissible en % des valeurs des
50 Hz	60 Hz	tableaux des pages suivantes
25 000	21 000	100 % de la valeur pour 25 000 heures
40 000	33 000	100 % de la valeur pour 40 000 heures
63 000	52 000	86 % de la valeur pour 40 000 heures
80 000	67 000	80 % de la valeur pour 40 000 heures

Charges admissibles sur le bout d'arbre

Les tableaux indiquent les charges radiales admissibles en Newtons, en supposant des charges axiales nulles et une température ambiante de 25 °C.


Les charges admissibles en cas d'efforts radiaux et axiaux simultanés sont disponibles sur demande.

La durée de vie des roulements L₁₀ est calculée selon le principe L_{10aah} de SKF qui prend également en compte la pureté de la graisse. Une lubrification adéquate est une condition indispensable pour le tableau ci-dessus.

Si la charge radiale est appliquée entre les points X₀ et X_{maxi} , l'effort admissible F_{R} peut être calculé avec la formule

$$F_{R} = F_{X0} - \frac{X}{E} (F_{X0} - F_{Xmaxi})$$

E = longueur du bout d'arbre de la série normalisée

Charges radiales admissibles

Hauteurs d'axe 63-132

			Roulemen	ts à billes		
		Longueur du bout	Série norr	nalisée ave	c roulemer	nts à billes
Hauteur d'axe	Pôles	d'arbre E (mm)	25 000 h F _{x0} (N)	F _{Xmaxi} (N)	40 000 h F _{x0} (N)	F _{xmaxi} (N)
63	2	23	490	400	490	400
	4	23	490	400	490	400
	8	23	490	400	490	400
71	2	30	680	570	680	570
	4	30	680	570	680	570
	6	30	680	570	680	570
	8	30	680	570	680	570
80	2	40	630	750	930	750
	4	40	930	750	930	750
	6	40	930	750	930	750
	8	40	930	750	930	750
90	2	50	1010	810	1010	810
	4	50	1010	810	1010	810
	6	50	1010	810	1010	810
	8	50	1010	810	1010	810
100	2	60	2280	1800	2280	1800
	4	60	2280	1800	2280	1800
	6	60	2280	1800	2280	1800
	8	60	2280	1800	2280	1800

			Rouleme	nts à billes		
Hauteur		Longueur du bout d'arbre	25 000 h	malisée ave	ec rouleme 40 000 h	
d'axe	Pôles	E (mm)	F _{x0} (N)	F _{Xmaxi} (N)	F _{x0} (N)	F _{Xmaxi} (N)
112	2	60	2280	1800	2280	1800
	4	60	2280	1800	2280	1800
	6	60	2280	1800	2280	1800
	8	60	2280	1800	2280	1800
1321)	2	80	2120	1610	2120	1610
	4	80	2120	1610	2120	1610
	6	80	2120	1610	2120	1610
	8	80	2120	1610	2120	1610
132 ²⁾	2	80	2600	2100	2600	2100
	4	80	2600	2100	2600	2100
	6	80	2600	2100	2600	2100
	8	80	2600	2100	2600	2100

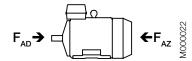
¹⁾ roulements de la série 62

Hauteurs d'axe 160-280

			Roulemen	ts à billes			Roulemer	ıts à rouleaux		
		Longueur	Série norr	nalisée avec	roulements à	billes	Autre séri	e avec roulen	nents à roule	aux
		du bout	20 000 h		40 000 h		20 000 h		40 000 h	
Hauteur d'axe	Pôles	d'arbre E (mm)	F _{xo} (N)	F _{xmaxi} (N)	F _{xo} (N)	F _{xmaxi} (N)	F _{xo} (N)	F _{xmaxi} (N)	F _{xo} (N)	$F_{xmaxi}(N)$
160	2	110	4760	3860	4100	3320	6580	4300	5620	4300
	4	110	5180	4200	4380	3545	7340	4300	6180	4300
	6	110	5160	4180	4360	3540	7780	4300	6500	4300
	8	110	6280	4300	5320	4300	8860	4300	7440	4300
180	2	110	6060	4960	5280 ¹⁾	4305 1)	7600	5500	6560	5500
	4	110	4800	3940	4020	3300	7280	5500	6140	5500
	6	110	6280	5140	5280	4380	8680	5500	7280	5500
	8	110	6960	5500	5880	4800	9440	5500	7920	5500
200	2	110	7800	6500	6760 ²⁾	5640 ²⁾	10360	8640	8880	7400
	4	110	8400	7020	7180	5980	11560	9550	9800	8180
	6	110	8960	7480	7600	6340	12480	9550	10520	8780
	8	110	10480	8740	8940	7400	14100	9550	11920	9550
225	2	110	8520	7180	7360 ³⁾	6200 ³⁾	12320	10380	10560	8900
	4	140	8380	6780	7200	5820	13380	10250	11320	9160
	6	140	10960	8860	9360	7560	15860	10250	13420	10250
	8	140	12100	9780	10340	8360	17220	10250	14580	10250
250	2	140	10480 4)	8500 4)	9080 4)	7360 4)	16220	10900	13960	10900
	4	140	10840	8780	9380	7600	18020	13800	15320	13800
	6	140	12600	10220	10700	8680	20240	13800	17140	13800
	8	140	14660	11880	12540	10160	22680	13800	19220	13800
280	2	140	6780	5500	5680	4600	16280	13200	14000	11360
	4	140	8060	6540	6640	5380	19480	15780	16540	13400
	6	140	8980	7280	7360	5960	21920	17760	18580	15060
	8	140	9180	7460	7460	6060	22240	18020	18860	15300

²⁾ roulements de la série 63

¹⁾ Durée de vie maxi de la graisse = 38 000 h, cf. page 88
²⁾ Durée de vie maxi de la graisse = 27 000 h, cf. page 88
³⁾ Durée de vie maxi de la graisse = 23 000 h, cf. page 88
⁴⁾ Durée de vie maxi de la graisse = 16 000 h, cf. page 88


Charges axiales admissibles

Les tableaux suivants spécifient les charges axiales admissibles en Newton, en supposant une charge radiale nulle et une température ambiante de 25 °C. Les valeurs sont basées sur des conditions normales de fonctionnement à 50 Hz avec des roulements standards et une durée de vie calculée de 20 000 et 40 000 heures

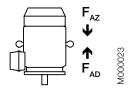
Pour les moteurs bi-vitesse, les valeurs doivent être basées sur la vitesse la plus élevée. Les charges admissibles en cas d'efforts radiaux et axiaux simultanés sont disponibles sur demande.

Les efforts axiaux donnés $\boldsymbol{F}_{\scriptscriptstyle{AD}}$ supposent la précontrainte du roulement C.C. au moyen d'un point fixe.

A 60 Hz, les valeurs doivent être réduites de 10 %.

Forme de montage IM B3

	20 000 heures								40 000	heures						
	2 pôles		4 pôles	6	6 pôles	5	8 pôles	3	2 pôles		4 pôles	3	6 pôles	6	8 pôles	}
	F_{AD}	F_{AZ}	$F_{\mathtt{AD}}$	F_{AZ}	$F_{\scriptscriptstyle{AD}}$	F_{AZ}	F_{AD}	F_{AZ}	F _{AD}	F_{AZ}	$F_{\mathtt{AD}}$	F_{AZ}	$F_{\scriptscriptstyle{AD}}$	F_{AZ}	$F_{\scriptscriptstyle{AD}}$	F_{AZ}
Hauteur d'axe	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
63	480	125	565	165	580	190	590	195	420	105	470	115	490	145	590	205
71	625	325	780	480	890	590	985	685	515	215	630	330	710	410	780	480
80	810	470	1015	675	1170	830	1300	960	650	315	810	470	925	595	1015	675
90	885	485	1170	650	1270	870	1410	1010	720	320	945	425	1005	605	1110	710
100	1620	1120	2065	1565	2390	1890	2660	2160	1280	780	1615	1115	1860	1360	2065	1565
112 M	-	-	-	-	-	-	2655	2155	-	-	-	-	-	-	2060	1560
112 MB	1615	1115	2060	1560	2385	1885	2655	2155	1275	775	1610	1110	1860	1360	2060	1560
132 M	-	-	2245	1645	-	-	2875	2270	-	-	1760	1160	-	-	2240	1640
132 MA	-	-	2245	1645	2595	1995	-	-	-	-	1760	1160	2025	1425	-	-
132 MC	-	-	-	-	2580	1980	-	-	-	-	-	-	2010	1410	-	-
132 MBA	-	-	2235	1635	-	-	-	-	-	-	1750	1150	-	-	-	-
132 S	-	-	-	-	2600	2000	2885	2285	-	-	-	-	2030	1435	2245	1645
132 SA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
132 SB	1770	1170	-	-	-	-	-	-	1400	800	-	-	-	-	-	-
132 SBB	1760	1160	-	-	-	-	-	-	1395	795	-	-	-	-	-	-
132 SC	1760	1160	-	-	-	-	-	-	1395	795	-	-	-	-	-	-
132 SMA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
132 SMB	2220	1620	2840	2240	-	-	-	-	1740	1140	2205	1605	-	-	-	-
132 SMC	2220	1620	-	-	-	-	-	-	1740	1140	-	-	-	-	-	-
132 SMD	-	-	2830	2200	-	-	-	-	-	-	2230	1595	-	-	-	-
132 SME	2210	1610	-	-	-	-	-	-	1730	1130	-	-	-	-	-	-
160	4160	4160	4740	4740	4840	4840	5980	5980	3425	3425	3920	3920	4000	4000	4920	4920
180	5480	5480	4360	4360	5980	5980	6000	6620	4600 ¹)	4600 ¹)	3540	3540	4940	4630	5460	5460
200	5000	6880	5000	7660	5000	8300	5000	9880	5000 ²⁾	5700 ²⁾	5000	6340	5000	6880	5000	8160
225	5000	7380	5000	7600	5000	10140	5000	11420	5000 ³⁾	6120 ³⁾	5000	6220	5000	8420	5000	9460
250	6000 4)	9020 4)	6000	9800	6000	11520	6000	13700	6000 4)	7500 ⁴⁾	6000	8040	6000	9520	6000	11380
280	5260	5260	6500	6500	7500	7500	7740	7740	4220	4220	5160	5160	6040	6040	6180	6180


¹⁾ Durée de vie maxi de la graisse = 38 000 h, cf. page 88

²⁾ Durée de vie maxi de la graisse = 27 000 h, cf. page 88

³⁾ Durée de vie maxi de la graisse = 23 000 h, cf. page 88

⁴⁾ Durée de vie maxi de la graisse = 16 000 h, cf. page 88

Charges axiales admissibles

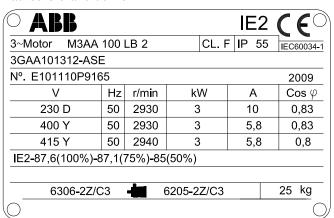
Forme de montage IM V1

	20 000	heures							40 000	heures						
	2 pôles		4 pôles		6 pôles		8 pôles		2 pôles		4 pôles		6 pôles		8 pôles	;
Hauteur d'axe	F _{AD}	F _{AZ} N	F _{AD}	F _{AZ}	F _{AD}	F _{AZ}	F _{AD}	F _{AZ} N	F _{AD}	F _{AZ} N	F _{AD}	F _{AZ}	F _{AD}	F _{AZ}	F _{AD}	F _{AZ}
63	495	115	585	155	600	180	-	-	440	95	490	105	550	115	-	-
71	640	315	800	470	925	570	1020	665	530	200	650	320	745	390	815	455
80	845	450	1075	640	1225	795	1350	925	690	290	865	430	980	550	1070	645
90	945	450	1245	600	1360	815	1485	960	775	280	1020	375	1095	550	1185	660
100	1710	1060	2180	1485	2510	1815	2780	2080	1370	715	1735	1035	1980	1285	2185	1485
112 M	-	-	-	-	-	-	2790	2070	-	-	-	-	-	-	2195	1475
112 MB	1725	1040	2210	1460	2540	1785	2810	2055	1385	700	1110	1010	2010	1260	2210	1460
132 M	-	-	2460	1505	-	-	3130	2115	-	-	1970	1015	-	-	2490	1470
132 MA	-	-	2460	1505	2815	1850	-	-	-	-	1970	1015	2245	1280	-	-
132 MC	-	-	-	-	2885	1780	-	-	-	-	-	-	2315	1210	-	-
132 MBA	-	-	2495	1465	-	-	-	-	-	-	2010	980	-	-	-	-
132 S	-	-	-	-	2780	1885	3100	2145	-	-	-	-	2210	1315	2460	1505
132 SA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
132 SB	1910	1075	-	-	-	-	-	-	1540	705	-	-	-	-	-	-
132 SBB	1950	1050	-	-	-	-	-	-	1580	670	-	-	-	-	-	-
132 SC	1945	1045	-	-	-	-	-	-	1575	670	-	-	-	-	-	-
132 SMA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
132 SMB	2435	1480	3150	2035	-	-	-	-	1950	995	2515	1400	-	-	-	-
132 SMC	2445	1470	-	-	-	-	-	-	1960	985	-	-	-	-	-	-
132 SMD	-	-	3195	1995	-	-	-	-	-	-	2560	1355	-	-	-	-
132 SME	2490	1425	-	-	-	-	-	-	2005	940	-	-	-	-	-	-
160	4560	3810	5260	4310	5400	4420	6560	5580	3860	3110	4440	3490	4540	3560	5460	4480
180	5920	5115	5080	3860	6000	5445	6000	6120	5060 ¹⁾	4255 1)	4240	3020	5600	4385	6000	4900
200	5000	6350	5000	6950	5000	7505	5000	9215	5000 ²⁾	5230 ²⁾	5000	5650	5000	6025	5000	7435
225	5000	6770	5000	6795	5000	9270	5000	10595	5000 ³⁾	5490 ³⁾	5000	5475	5000	7490	5000	8535
250	6000 4)	8335 4)	6000	8820	6000	10275	6000	12645	6000 4)	6755 4)	6000	7120	6000	8235	6000	10205
280	6400	4400	7920	5400	8500	6180	8500	6435	5420	3420	6640	4120	7840	4640	7980	4775

¹⁾ Durée de vie maxi de la graisse = 38 000 h, cf. page 88
²⁾ Durée de vie maxi de la graisse = 27 000 h, cf. page 88
³⁾ Durée de vie maxi de la graisse = 23 000 h, cf. page 88
⁴⁾ Durée de vie maxi de la graisse = 16 000 h, cf. page 88

Plaques signalétiques

Les plaques signalétiques donnent, en standard, sous forme de tableau les valeurs de vitesse, de courant et de facteur de puissance pour trois tensions.


Les informations suivantes doivent apparaître sur la plaque signalétique du moteur, conformément à la norme IEC 60034-30; 2008 et au programme européen MEPS (réglement EC 640/2009) :

- Rendement nominal mini à 100 %, 75 % et 50 % de charge nominale
- Classe de rendement (IE2 ou IE3)
- Année de fabrication

Hauteurs d'axe 71-80

3~Motor M3A		IE2 ((
3GAA081313	8P9150	CI	. F	IP 55				
6204-2Z/C3	620	03-2Z/C	3				1	1 kg
O v	Hz	r/min	kV	V	Α		Co	sφΟ
230 D / 400 Y	50	2880	1,	1	4,1/2	,4	C),78
415 Y	50	2870	1,	1	2,4		C),76
F \ IE2-81,9(100%	6)-81 <u>(</u>	75%)-78	3,5(50%	%)	2009	IEC	60	034-1

Hauteurs d'axe 90-132

Hauteurs d'axe 160-180

	\BB	,				IE2	CE
3∼ Motor	M3AA	180	MLB 4	CI	.F IP	55	IEC 60034-1
V		Hz	kW	r/min	Α	cos Ψ	duty
690	Υ	50	22	1475	24,0	0,83	S1
400	Δ	50	22	1475	41,5	0,83	S1
O 415	Δ	50	22	1477	40,4	0,81	S1 O
Prod.code	3G	AA18	32032-A	DG	No 3GV	/09123	45678001
50 Hz: IE	2 - 92	,1(100%) -	- 93,1(75%) -	93,0(50%) 2009
6313-2Z/C	:3		- 100	6212-22	Z/C3		188 kg
			spa	re-parts:ww	w.abb.com/p	partsonlin	

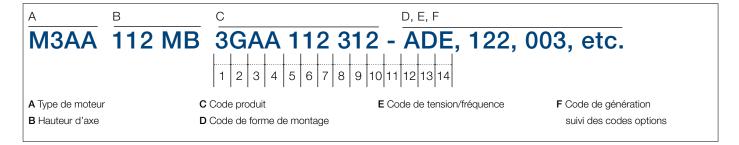
Hauteurs d'axe 200-280

<u>3~Mot</u>	or	МЗАА	225	SMA 4			
				2009	No 3GV	09234	56789001
					Ins.cl.	. F	IP 55
V		Hz	kW	r/min	А	cosΨ	duty
690	Υ	50	37	1479	39,2	0,84	S1
400	Δ	50	37	1479	68	0,84	S1
415	Δ	50	37	1481	68	0,81	S1
50 Hz	: 18	2 - 93	3,4(100)%) - 93	,9(75%) -	93,4(50%)
Prod	CO	de 30	SAA222	2031-A	DG		
	~ 0	40 00	7 17 12 22				

Informations pour commander

Pour toute commande, vous devez spécifier au minimum les données suivantes, comme dans l'exemple ci-après.

Le code produit est établi comme décrit ci-après.


Type de moteur M3AA 112 MB Nombre de pôles 4

Forme de montage (code IM) IM B3 (IM 1001)

Puissance nominale 4 kW
Code produit 3GAA 112312-ADE

Codes options, au besoin

Hauteur d'axe

Signification du code produit

Positions 1 à 4

3GAA = Moteur fermé, gamme aluminium

Position 4

Type de rotor

A = Asynchrone

Positions 5 et 6

Hauteur d'axe normalisée IEC

06 = 63

07 = 71

08 = **80**

09 = 90

10 = 100

11 = 112

13 = 132

13 = 132

16 = 160

18 = 180

20 = 200

22 = 225 25 = 250

28 = 280

Position 7

Vitesse (paires de pôles)

1 = 2 pôles

2 = 4 pôles

3 = 6 pôles

4 = 8 pôles

5 = 10 pôles

6 = 12 pôles

7 = > 12 pôles

8 = Moteurs bi-vitesse

9 = Moteurs multivitesse

Positions 8 à 10

Longueur de fer

Position 11

- (tiret)

Position 12

Forme de montage

A = Moteur à pattes

B = Moteur à bride ; trous lissesC = Moteur à bride ; trous taraudés

F = Moteur à pattes et à bride ; bride spéciale

H = Moteur à pattes et à bride ; bride à trous lisses

J = Moteur à pattes et à bride ; bride à trous taraudés
 N = Moteur à bride (Anneau Fonte, Bride trous lisses)

P = Moteur à pattes et à bride (Anneau Fonte, Bride trous lisses)

V = Moteur à bride ; bride spéciale

Position 13

Code de tension et fréquence

Moteurs mono-vitesse

B 380 V∆ 50 Hz

D 400 VΔ, 415 VΔ, 690 VY 50 Hz

E 500 V∆ 50 Hz

F 500 VY 50 Hz

S 230 V∆, 400 VY, 415 VY 50 Hz

T 660 V∆ 50 Hz

U 690 V∆ 50 Hz

X Autre tension nominale, couplage ou fréquence, 690 V maxi

Moteurs bi-vitesse

A 220 V 50 Hz

B 380 V 50 Hz

D 400 V 50 Hz

E 500 V 50 Hz

S 230 V 50 Hz

X Autre tension nominale, couplage ou fréquence, 690 V maxi

Remarque : Code de tension X : le code option 209 pour tension ou fréquence non standard (bobinage spécial) doit être commandé.

Position 14

Version A,B,C... = Le code de génération est suivi des codes options

Moteurs Process Performance BT • gamme aluminium Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE2 selon IEC 60034-30; 2008

				Renden IEC 600	nent 134-2-1;	2007		Intens	ité	Couple	Э		Mamont		Niivoov do
Puissance			Vitesse	100 %		50 %	Facteu puiss.	I _N	l _s	C _N	C _i	C _b	Moment d'inertie J = 1/4 GD ²	Masse	Niveau de pression sonore L _{PA}
kW	Type moteur	Code produit	tr/min	charge	charge	charge	cos φ	A	I _N	Nm	$\overline{C_N}$	C _N	kgm ²	kg	dB
	n = 2 pôles	400 V 50 Hz								nalisée					
0.18	M2AA 63 A	3GAA 061 001-••C	2820	75.0	72.0	66.1	0.62	0.55	4.2	0.6	3.5	3.1	0.00013	3.9	54
0.25	M2AA 63 B	3GAA 061 002-••C	2810	78.6	77.0	69.6	0.69	0.66	4.5	0.84	3.6	3.3	0.00016	4.4	54
0.37	M2AA 71 A	3GAA 071 001-••E	2800	71.6	72.3	70.2	0.76	0.98	5.1	1.26	3.0	2.9	0.00035	4.9	58
0.55	M2AA 71 B	3GAA 071 002-••E	2790	78.4	79.8	78.7	0.78	1.29	5.3	1.88	2.9	2.8	0.00045	5.9	58
0.75	M3AA 80 B	3GAA 081 312-••E	2845	80.1	79.7	76.6	0.73	1.85	7.5	2.5	3.7	3.9	0.0009	10.5	60
1.1	M3AA 80 C	3GAA 081 313-••E	2880	82.1	82.0	79.2	0.81	2.3	7.6	3.6	2.8	3.6	0.0012	11	60
1.5	M3AA 90 L	3GAA 091 312-••E	2900	84.1	85.0	83.5	0.86	2.9	7.6	4.9	2.5	3.3	0.0024	16	60
2.2	M3AA 90 LB	3GAA 091 313-••E	2875	84.6	85.7	85.5	0.85	4.4	6.9	7.3	2.8	3.2	0.0027	18	63
3	M3AA 100 LB	3GAA 101 312-••E	2930	87.9	87.9	86.6	0.86	5.7	8.7	9.7	3.3	4.0	0.005	25	62
4	M3AA 112 MB	3GAA 111 312-••E	2885	86.1	87.0	88.0	0.88	7.6	7.6	13.2	2.5	2.8	0.0062	30	68
5.5	M3AA 132 SB	3GAA 131 312-••E	2915	88.0	88.5	87.6	0.82	11	7.9	18	2.6	3.6	0.016	42	73
7.5	M3AA 132 SC	3GAA 131 313-••E	2915	88.5	88.7	88.1	0.87	14	7.6	24.5	2.2	3.2	0.022	56	73
11	M3AA 160 ML/		2938	90.7	91.5	91.1	0.91	19.2	7.5	35.7	2.4	3.1	0.044	91	69
15	M3AA 160 MLI		2934	91.5	92.5	92.2	0.91	26	7.5	48.8	2.5	3.3	0.053	105	69
18.5	M3AA 160 ML0		2932	92.0	93.1	93.1	0.92	31.5	7.5	60.2	2.9	3.4	0.063	123	69
22	M3AA 180 ML/	A 3GAA 181 031-••G	2952	92.2	92.7	92.2	0.87	39.5	7.7	71.1	2.8	3.3	0.076	132	69
30	M3AA 200 ML/		2956	93.1	93.5	92.9	0.90	51.6	7.7	96.9	2.7	3.1	0.178	210	72
37	M3AA 200 MLI	3 3GAA 201 036-••G	2959	93.4	93.7	93.0	0.90	63.5	8.2	119	3.0	3.3	0.196	225	72
45	M3AA 225 SM		2961	93.6	93.9	93.1	0.88	78.8	6.7	145	2.5	2.5	0.244	263	74
55	M3AA 250 SM	A 3GAA 251 031-••G	2967	94.1	94.4	93.8	0.88	95.8	6.8	177	2.2	2.7	0.507	304	75
75	M3AA 280 SM	A 3GAA 281 031-••G	2968	94.5	94.8	94.3	0.89	128	7.1	241	2.5	2.8	0.583	389	75
90 1)	M3AA 280 SMI		2971	95.0	95.2	94.8	0.89	153	7.8	289	2.6	3.2	0.644	425	75
	n = 2 pôles	400 V 50 Hz								ssance	augr	nente	ee		
1.5 1) 2)	M3AA 80 C	3GAA 081 003-••E	2830	80.7	82.0	80.0	0.83	3.2	5.8	5	2.6	3.0	0.0011	11	60
2.7 1) 2)	M3AA 90 LB	3GAA 091 003-••E	2860	81.0	81.2	79.0	0.86	5.5	7.0	9	2.6	3.0	0.0027	18	68
4 1) 2)	M3AA 100 LB	3GAA 101 002-••E	2900	84.3	83.9	83.7	0.86	7.9	7.5	13.1	2.7	3.6	0.005	25	68
5.5 ^{1) 2)}	M3AA 112 MB	3GAA 111 102-••E	2850	86.4	87.0	87.4	0.90	10.2	7.2	18.4	3.4	3.4	0.0062	30	68
9.2 1) 2)	M3AA 132 SBE		2875	87.0	88.0	86.5	0.92	16.5	7.2	30.5	2.5	3.0	0.018	52	68
11	M3AA 132 SMI		2900	90.3	90.8	90.4	0.87	20.2	8.5	36.2	2.7	3.7	0.01865	77	68
11 1) 2)	M3AA 132 SC	3GAA 131 003-••E	2890	88.7	89.5	89.3	0.89	20.1	8.1	36.3	2.8	3.4	0.018	52	68
15	M3AA 132 SM		2905	90.4	90.7	89.8	0.84	28.5	9.1	49.3	3.3	4.0	0.02	81	69
18.5	M3AA 132 SM		2895	91.1	92.2	92.4	0.89	32.9	9.7	61	3.2	4.3	0.02559	93	68
22 1) 2)	M3AA 132 SMI	······································	2890	90.2	91.0	90.9	0.85	41.4	9.7	72.6	3.9		0.02559	91	69
22	M3AA 160 MLI		2933	91.7	92.9	92.9	0.91	38	8.1	71.6			0.063	123	69
30 1) 2)	M3AA 160 MLI		2925	91.7	93.1	93.3	0.91	51.8	7.8	97.9	3.1	3.4	0.072	145	69
30	M3AA 180 MLI	••••••	2950	92.8	93.5	93.3	0.88	53	7.9	97.1	2.8	3.3	0.092	149	69
45	M3AA 200 ML0		2957	93.3	93.8	93.2	0.88	79.1	8.1	145	3.1	3.3		225	72
55 ¹⁾	M3AA 200 MLI		2953	93.8	94.5	94.3	0.89	95	7.8	177	2.9	3.3		241	72
55	M3AA 225 SMI		2961	93.9	94.3	93.6	0.88	96		177	2.4		0.274	286	74
75 ¹⁾	M3AA 225 SM	••••••	2969	94.5	94.7	94.0	0.84	136	· · · • · · · · · · · · · · · ·	241	3.2	3.1	•••••	312	74
75	M3AA 250 SMI		2970	94.6	94.9	94.4	0.89	128	7.6	241	2.8	3.1	0.583	351	75
80 1)	M3AA 225 SMI		2964	94.5	94.9	94.3	0.87	140	7.3	257	3.0	2.8	0.329	317	74
90 1)	M3AA 250 SM	C 3GAA 251 033-••G	2971	95.0	95.3	95.0	0.89	153	7.6	289	2.5	3.1	0.644	386	75

Les deux puces (••) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour commander").

 $\begin{array}{ll} {\rm I_s \ / \ I_N} & = {\rm courant \ de \ d\acute{e}marrage} \\ {\rm C_l \ / \ C_N} & = {\rm couple \ \grave{a} \ rotor \ bloqu\acute{e}} \\ {\rm C_b \ / \ C_N} & = {\rm couple \ d\acute{e} \ d\acute{e}crochage} \end{array}$

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B.: les valeurs ne sont pas comparables sans connaître la méthode de mesure.

ABB a calculé les valeurs de rendement selon la méthode indirecte, les pertes supplémentaires étant déterminées par mesure.

²⁾ Classe de rendement IE1

Moteurs Process Performance BT • gamme aluminium Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE2 selon IEC 60034-30; 2008

				Renden	nent)34-2-1;	2007		Intensi	ité	Couple	e		., .		
Puissance			Vitesse	100 %		50 %	- Facteur puiss.		l _s	C _N	C _i	C _b	Moment d'inertie J = 1/4 GD ²	Masse	Niveau de pression sonore L _{PA}
kW	Type moteur	Code produit	tr/min			charge		A	Ī _N	Nm	$\overline{C_N}$	$\overline{C_N}$	kgm ²	kg	dB
1500 tr/m	in = 4 pôles	400 V 50 Hz						Série	norn	nalisée					
0.12	M2AA 63 A	3GAA 062 001-••C	1400	65.5	60.4	51.7	0.57	0.46	3.1	0.81	2.7	2.8	0.00019	4	40
0.18	M2AA 63 B	3GAA 062 002-••C	1380	67.3	63.9	56.7	0.62	0.62	3.1	1.24	2.5	2.6	0.00026	4.5	40
0.25	M2AA 71 A	3GAA 072 001-••E	1365	65.1	66.0	62.7	0.76	0.72	4.0	1.74	2.0	2.1	0.00066	5.2	45
0.37	M2AA 71 B	3GAA 072 002-••E	1355	69.7	71.9	71.1	0.79	0.96	3.8	2.6	2.0	2.2	0.0008	5.9	45
0.55	M2AA 80 A	3GAA 082 001-••E	1375	74.1	75.9	75.0	0.78	1.37	4.5	3.8	1.9	2.2	0.0013	8.5	50
0.75	M3AA 80 D	3GAA 082 314-••E	1415	79.9	80.4	78.6	0.75	1.8	5.8	5	2.6	2.8	0.0016	12	50
1.1	M3AA 90 LB	3GAA 092 314-••E	1435	83.7	84.1	83.0	0.78	2.4	6.6	7.3	2.9	3.2	0.0043	16	50
1.5	M3AA 90 LD	3GAA 092 315-••E	1435	84.2	84.1	81.9	0.76	3.3	7.0	9.9	3.1	3.5	0.0048	17	50
2.2	M3AA 100 LC	3GAA 102 313-••E	1450	87.1	86.8	84.8	0.78	4.6	7.3	14.4	2.8	3.4	0.009	25	54
3	M3AA 100 LD	3GAA 102 314-••E	1445	85.7	86.1	85.1	0.79	6.3	7.0	19.8	2.4	3.0	0.011	28	63
4	M3AA 112 MB	3GAA 112 312-••E	1445	86.7	86.5	85.2	0.75	8.8	7.3	26.4	3.1	3.4	0.0126	34	64
5.5	M3AA 132 M	3GAA 132 312-••E	1465	89.0	89.8	89.1	0.79	11.2	6.3	35.8	1.9	2.6	0.038	48	66
7.5	M3AA 132 MA	3GAA 132 314-●•E	1460	89.1	89.9	89.5	0.79	15.3	6.4	49	1.8	2.6	0.048	59	63
11	M3AA 160 MLA	3GAA 162 031-••G	1466	90.4	91.6	91.3	0.84	20.9	6.8	71.6	2.2	2.8	0.081	99	62
15	M3AA 160 MLB	3GAA 162 032-••G	1470	91.4	92.4	92.2	0.83	28.5	7.1	97.4	2.6	3.0	0.099	118	62
18.5	M3AA 180 MLA	3GAA 182 031-••G	1477	91.9	92.9	92.7	0.84	34.5	7.2	119	2.6	2.9	0.166	146	62
22	M3AA 180 MLB	3GAA 182 032-••G	1475	92.4	93.3	93.2	0.84	40.9	7.3	142	2.6	3.0	0.195	163	62
30	M3AA 200 MLA	3GAA 202 031-••G	1480	93.2	94.0	93.7	0.84	55.3	7.4	193	2.8	3.0	0.309	218	63
37	M3AA 225 SMA	3GAA 222 031-••G	1479	93.4	93.9	93.4	0.84	68	7.1	238	2.6	2.9	0.356	240	66
45	M3AA 225 SMB	3GAA 222 032-••G	1480	93.9	94.3	93.9	0.85	81.3	7.5	290	2.8	3.2	0.44	273	66
55	M3AA 250 SMA	3GAA 252 031-••G	1480	94.4	95.0	94.7	0.85	98.9	7.0	354	2.6	2.9	0.765	314	67
75 ¹⁾	M3AA 280 SMA	3GAA 282 031-••G	1478	94.3	95.0	94.7	0.85	135	7.1	484	2.8	3.0	0.866	389	67
90 1)	M3AA 280 SMB	3GAA 282 032-••G	1478	94.7	95.4	95.2	0.84	163	7.7	581	3.2	3.4	0.941	418	67
1500 tr/m	in = 4 pôles	400 V 50 Hz						Série	puis	sance	augn	nenté	e		
0.95 1) 2)	M3AA 80 C	3GAA 082 003-••E	1395	76.0	76.9	76.3	0.80	2.2	5.2	6.5	2.5	2.6	0.0023	10.5	50
1.1 1) 2)	M3AA 80 C	3GAA 082 004-••E	1395	76.7	77.5	77.9	0.79	2.6	5.0	7.5	2.5	2.5	0.0023	10.5	50
1.85 1) 2)	M3AA 90 L	3GAA 092 003-••E	1390	79.3	78.5	78.7	0.80	4.2	4.5	12.7	2.2	2.4	0.0043	16	50
2.2 1) 2)	M3AA 90 LB	3GAA 092 004-••E	1390	80.0	80.9	79.5	0.83	4.7	4.5	15.1	2.2	2.4	0.0048	17	50
4 1) 2)	M3AA 100 LC	3GAA 102 003-••E	1420	83.2	83.3	81.7	0.82	8.4	5.5	26.8	2.5	2.8	0.009	25	60
5.5 ^{1) 2)}	M3AA 112 MB	3GAA 112 102-••E	1420	85.1	85.5	84.5	0.80	11.6	6.0	36.9	2.7	3.1	0.0126	34	64
9.2 1)	M3AA 132 MBA	3GAA 132 004-••E	1455	89.8	90.5	89.5	0.84	17.6	7.5	60.3	2.1	2.8	0.048	59	59
11	M3AA 132 SMB	3GAA 132 315-••E	1460	90.4	91.0	90.1	0.79	22.2	7.7	71.9	2.1	3.1	0.0433	83	65
15	M3AA 132 SMD	3GAA 132 316-••E	1455	90.6	91.3	91.1	0.77	31	7.1	98.4	2.4	2.9	0.0517	92	67
18.5 ^{1) 2)}	M3AA 132 SMD	3GAA 132 007-••E	1445	89.4	90.0	89.5	0.78	38.2		122	2.3		0.05166	92	69
18.5	M3AA 160 MLC	3GAA 162 033-••G	1469	91.4	92.5	92.3	0.84	34.7	7.6	120	3.0	3.2	0.11	127	62
22	M3AA 160 MLD	3GAA 162 034-••G	1463	91.6	93.0	93.2	0.85	40.7	6.9	143	2.5		0.125	140	62
30 1)	M3AA 180 MLC	3GAA 182 033-••G		92.3	93.5	93.5	0.83			194	2.7		0.217	177	62
37	M3AA 200 MLB	3GAA 202 032-••G		93.4	94.4	94.4	0.85		7.1	238	2.6		0.343	234	63
45 ¹⁾	M3AA 200 MLC	3GAA 202 033-••G	1479	93.6	94.4	94.2	0.83	83.6	7.5	290	2.9	3.2	0.366	246	63
55	M3AA 225 SMC	3GAA 222 033-••G	1478	94.0	94.7	94.5	0.85	99.3	7.4	355	2.9		0.474	287	66
73 1) 2)	M3AA 225 SMD	3GAA 222 034-••G	1474	93.6	94.6	94.4	0.85	132	7.1	472	2.9	2.9	0.542	314	66
75 ¹⁾	M3AA 250 SMB	3GAA 252 032-••G	1478	94.4	95.1	94.9	0.85	134	7.3	484	2.8	3.1	0.866	350	67
90 1)	M3AA 250 SMC	3GAA 252 033-••G	1478	94.7	95.3	95.0	0.84	163	7.4	581	3.1	3.3	0.941	377	67

¹⁾ Echauffement classe F

Les deux puces (••) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour commander").

 $\begin{array}{ll} {\rm I_s \ / \ I_N} & = {\rm courant \ de \ d\acute{e}marrage} \\ {\rm C_l \ / \ C_N} & = {\rm couple \ \grave{a} \ rotor \ bloqu\acute{e}} \\ {\rm C_b \ / \ C_N} & = {\rm couple \ d\acute{e} \ d\acute{e}crochage} \end{array}$

²⁾ Classe de rendement IE1

Moteurs Process Performance BT • gamme aluminium Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE2 selon IEC 60034-30; 2008

							Renden IEC 600	nent)34-2-1;	2007		Intensi	ité	Couple	е		Moment		Niveau de
Puissa	ınce					Vitesse	100 %	75 %	50 %	Facteur puiss.	I _N	 s	C_N	$\frac{C_i}{a}$	C _b	d'inertie $J = 1/4 \text{ GD}^2$	Masse	
1000 :		Type m in = 6 i		Code p	oroduit 50 Hz	tr/min	charge	charge	charge	cos φ	A Sório	l _N	Nm nalisée	C _N	C_N	kgm ²	kg	dB
0.09		M2AA	•		063 001-••C	910	47.1	42.5	32.1	0.56	0.49	2.1	0.94	2.1	2.1	0.0002	4	38
0.12		M2AA			063 001-••C	910	57.5	54.0	46.2	0.58	0.43	2.1	1.25	2.1	2.1	0.0002	4.5	38
0.12		M2AA			073 001-••E	895	60.4	60.0	55.0	0.73	0.58	3.1	1.92	1.9	2.0	0.00027	5.5	42
0.25		M2AA			073 002-••E	895	64.0	63.6	59.5	0.71	0.79	3.3	2.6	2.2	2.2	0.00032	6.5	42
0.37		M2AA	••		083 001-••E	910	69.9	71.4	68.8	0.73	1.04	3.6	3.8	1.6	2.0	0.002	9	47
0.55		M2AA		3GAA		905	72.1	73.4	71.2	0.69	1.59	3.3	5.8	1.8	1.9	0.0026	10	47
0.75		МЗАА			093 313-••E	930	77.6	76.2	75.6	0.71	1.96	4.0	7.7	2.0	2.3	0.0048	18	44
1.1		МЗАА			093 314-••E	930	78.1	78.6	76.4	0.66	3	4.0	11.2	1.9	2.3	0.0056	20	44
1.5		***************************************	100 LC	••••••	103 312-••E	945	80.3	81.4	80.7	0.73	3.6	3.9	15.1	1.7	2.0	0.009	26	49
2.2			112 MB		113 312-••E	940	81.8	83.1	82.5	0.73	5.3	4.4	22.3	1.8	2.2	0.01	28	56
3		МЗАА			133 311-••E	960	83.3	83.6	81.7	0.65	7.9	4.3	29.8	1.6	2.3	0.031	39	57
4		МЗАА	132 MA	3GAA	133 312-••E	960	84.9	85.3	83.9	0.68	10	4.6	39.7	1.5	2.2	0.038	46	61
5.5		МЗАА	132 MC	3GAA	133 314-••E	965	86.1	86.1	84.3	0.67	13.7	6.2	54.4	2.5	2.8	0.049	59	61
7.5		МЗАА	160 MLA	3GAA	163 031-••G	975	88.6	89.9	89.7	0.79	15.4	7.4	73.4	1.7	3.2	0.087	98	59
11		МЗАА	160 MLB	3GAA	163 032-••G	972	89.3	90.7	90.6	0.79	22.5	7.5	108	1.9	2.9	0.114	125	59
15		МЗАА	180 MLA	3GAA	183 031- •• G	981	90.5	91.4	91.0	0.77	31	6.5	146	1.8	2.8	0.192	162	59
18.5		МЗАА	200 MLA	3GAA	203 031-••G	988	91.6	92.3	91.7	0.80	36.4	6.7	178	2.3	2.9	0.382	196	63
22		МЗАА	200 MLB	3GAA	203 032-••G	987	92.0	93.0	92.8	0.82	42	6.6	212	2.2	2.8	0.448	218	63
30		МЗАА	225 SMA	3GAA	223 031-••G	986	92.7	93.3	92.9	0.83	56.2	7.0	290	2.6	2.9	0.663	266	63
37		МЗАА	250 SMA	3GAA	253 031-••G	989	93.1	93.8	93.4	0.82	69.9	6.8	357	2.4	2.7	1.13	294	63
45 ¹)	МЗАА	280 SMA	3GAA	283 031-••G	988	93.2	94.0	93.9	0.84	82.9	6.8	434	2.4	2.6	1.369	378	63
55 ¹)	МЗАА	280 SMB	3GAA	283 032-••G	988	93.2	94.1	94.0	0.84	101	7.1	531	2.6	2.8	1.5	404	63
1000	tr/m	in = 6	oôles	400 V	50 Hz						Série	puis	sance	augn	nenté	е		
0.75 1) 2)	МЗАА	80 C	3GAA	083 003-••E	905	70.1	70.3	69.1	0.76	2	3.9	7.9	2.5	2.4	0.0031	11	47
1.3 1) 2)	МЗАА	90 LB	3GAA	093 003-••E	910	74.4	72.6	68.7	0.71	3.5	4.0	13.6	1.9	2.2	0.0048	18	44
2.2 1) 2)	МЗАА	100 LC	3GAA	103 002-••E	940	78.0	74.0	71.2	0.71	5.7	4.5	22.3	1.9	2.3	0.009	26	49
3 1) 2)	МЗАА	112 MB	3GAA	113 102-••E	920	79.7	80.5	80.3	0.75	7.2	3.8	31.1	1.9	2.2	0.0126	32	76
15 ²	2)	МЗАА	160 MLC	3GAA	163 033-••G	967	88.7	90.5	90.5	0.76	32.1	6.3	148	2.0	2.9	0.131	138	59
18.5 ¹) 2)	МЗАА	180 MLB	3GAA	183 032-••G	970	88.8	90.7	90.7	0.75	40	5.1	182	1.6	2.5	0.213	175	59
30 ¹)	МЗАА	200 MLC	3GAA	203 033-••G	985	92.0	93.1	92.9	0.83	56.7	6.9	290	2.3	2.8	0.531	245	63
37		МЗАА	225 SMB	3GAA	223 034-••G	985	93.1	94.0	94.0	0.83	69.1	6.6	358	2.3	2.6	0.821	300	63
45 ¹)	МЗАА	250 SMB	3GAA	253 032-••G	989	93.4	94.1	93.9	0.83	83.7	7.0	434	2.5	2.7	1.369	341	63
45 ¹)	МЗАА	225 SMC	3GAA	223 033-••G	984	92.7	93.9	94.0	0.83	84.4	6.4	436	2.3	2.6	0.821	300	63
55 ¹)	МЗАА	250 SMC	3GAA	253 033-••G	988	93.2	94.1	94.0	0.84	101	7.1	531	2.6	2.8	1.5	367	63

¹⁾ Echauffement classe F

Les deux puces (••) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour commander").

 $\begin{array}{ll} {\rm I_s} \, / \, {\rm I_N} &= {\rm courant} \; {\rm de} \; {\rm démarrage} \\ {\rm C_l} \, / \, {\rm C_N} &= {\rm couple} \; {\rm \grave{a}} \; {\rm rotor} \; {\rm bloqu\acute{e}} \\ {\rm C_b} \, / \, {\rm C_N} &= {\rm couple} \; {\rm de} \; {\rm d\acute{e}crochage} \end{array}$

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B.: les valeurs ne sont pas comparables sans connaître la méthode de mesure.

ABB a calculé les valeurs de rendement selon la méthode indirecte, les pertes supplémentaires étant déterminées par mesure.

²⁾ Classe de rendement IE1

Moteurs Process Performance BT • gamme aluminium Caractéristiques techniques des moteurs asynchrones triphasés fermés

IP 55 - IC 411 - Isolation classe F, échauffement classe B Classe de rendement IE2 selon IEC 60034-30; 2008

				Renden IEC 600		2007		Intens	ité	Couple	е		Moment		Niveau de
Puissance kW	e Type moteur	Code produit	Vitesse tr/min	100 % charge		50 % charge	Facteui puiss. cos φ	r I _N A	l _s	C _N	$\frac{C_I}{C_N}$	$\frac{C_b}{C_N}$	d'inertie J = 1/4 GD ² kgm ²	Masse kg	pression sonore L _{PA} dB
750 tr/mi	in = 8 pôles	400 V 50 Hz						Série	norn	nalisée)				
0.18	M3AA 80 A	3GAA 084 001-••E	685	63.5	62.0	56.3	0.62	0.65	2.8	2.5	1.6	2.0	0.0018	8.5	45
0.25	M3AA 80 B	3GAA 084 002-••E	685	67.1	67.2	63.4	0.63	0.85	2.8	3.4	1.4	1.9	0.0024	9.5	50
0.37	M3AA 90 S	3GAA 094 001-••E	695	59.4	56.3	49.1	0.54	1.66	2.7	5	1.6	2.1	0.0032	13	52
0.55	M3AA 90 L	3GAA 094 002-••E	660	59.1	59.5	55.2	0.58	2.3	2.1	7.9	1.5	1.6	0.0043	16	52
0.75	M3AA 100 LA	3GAA 104 001-••E	720	70.7	67.1	59.9	0.47	3.2	3.9	9.9	2.8	3.6	0.0069	20	46
1.1	M3AA 100 LB	3GAA 104 002-••E	695	76.0	76.5	74.6	0.66	3.1	3.4	15.1	1.7	2.2	0.0082	23	53
1.5	M3AA 112 M	3GAA 114 101-••E	690	74.4	75.9	74.1	0.70	4.1	3.2	20.7	1.4	1.9	0.01	28	55
2.2	M3AA 132 S	3GAA 134 001-••E	715	82.9	83.0	80.8	0.62	6.1	3.4	29.3	1.3	1.9	0.0038	46	56
3	M3AA 132 M	3GAA 134 002-••E	715	79.9	80.8	79.1	0.64	8.4	3.2	40	1.2	1.8	0.0045	53	58
4	M3AA 160 MLA	3GAA 164 031-••G	728	84.1	85.1	83.7	0.67	10.2	5.4	52.4	1.5	2.6	0.068	84	59
5.5	M3AA 160 MLB	3GAA 164 032-••G	726	84.7	86.0	84.9	0.67	13.9	5.6	72.3	1.4	2.6	0.085	98	59
7.5	M3AA 160 MLC	3GAA 164 033-••G	727	86.1	87.3	86.6	0.65	19.3	4.7	98.5	1.5	2.8	0.132	137	59
11	M3AA 180 MLA	3GAA 184 031-••G	731	86.8	88.4	87.8	0.67	27.3	4.4	143	1.8	2.6	0.214	175	59
15	M3AA 200 MLA	3GAA 204 031-••G	737	90.2	91.3	90.9	0.74	32.4	5.3	194	2.0	2.4	0.45	217	60
18.5	M3AA 225 SMA	3GAA 224 031-••G	739	91.0	92.0	91.5	0.73	40.1	5.2	239	2.0	2.3	0.669	266	63
22	M3AA 225 SMB	3GAA 224 032-••G	738	91.6	92.4	92.0	0.74	46.8	5.5	284	2.0	2.3	0.722	279	63
30	M3AA 250 SMA	3GAA 254 031-••G	742	92.4	92.9	92.3	0.71	66	5.8	386	2.6	2.4	1.404	340	63
37	M3AA 280 SMA	3GAA 284 031-••G	740	92.3	93.0	92.7	0.74	78.1	5.6	477	2.4	2.3	1.505	403	63
750 tr/mi	in = 8 pôles	400 V 50 Hz						Série	e puis	sance	augi	mente	ée		
0.37 1)	M3AA 80 C	3GAA 084 003-••E	700	57.5	56.0	55.0	0.62	1.49	3.3	5	2.5	2.5	0.0031	11	45
0.75 1)	M3AA 90 LB	3GAA 094 003-••E	680	63.1	59.8	53.0	0.60	2.8	3.0	10.5	1.8	2.0	0.0048	18	43
1.5 1)	M3AA 100 LC	3GAA 104 003-••E	670	70.0	65.2	63.8	0.70	4.4	3.3	21.3	1.8	2.2	0.009	26	46
2 1)	M3AA 112 MB	3GAA 114 102-••E	685	73.2	72.5	70.0	0.69	5.7	3.4	27.8	2.1	2.3	0.0126	32	52

Les deux puces (••) dans le code produit doivent être remplacées par le code du mode de montage et par le code de tension et de fréquence (voir "informations pour commander").

 $I_s / I_N = courant de démarrage$ $<math>C_I / C_N = couple à rotor bloqué$ C_b / C_N = couple de décrochage

Valeurs de rendement selon IEC 60034-2-1; 2007

N.B.: les valeurs ne sont pas comparables sans connaître la méthode de mesure.

ABB a calculé les valeurs de rendement selon la méthode indirecte, les pertes supplémentaires étant déterminées par mesure.

¹⁾ Echauffement classe F

Moteurs Process Performance BT • gamme aluminium Codes options

Code	Option ¹⁾	Hau	teur d	'axe										
		63	71	80	90	100	112	132	160	180	200	225	250	280
Équilib	prage													
417	Equilibrage Grade B (IEC 60034-14)	NA	NA	NA	Р	Р	Р	Р	R	R	R	R	R	R
423	Equilibrage sans clavette	NA	NA	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
424	Equilibrage clavette entière	NA	NA	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
Rouler	ments et lubrification													
036	Blocage rotor pour le transport	NA	NA	NA	М	М	М	М	М	М	М	М	М	М
037	Roulement à rouleaux C.C. ; blocage rotor pour le transport inclus	NA	NA	NA	Р	Р	Р	Р	М	М	М	М	М	М
039	Graisse basse température)	NA	М	М	М	М	М	М	NA	NA	NA	NA	NA	NA
040	Graisse haute température	NA	М	М	М	М	М	М	S	S	S	S	S	S
041	Roulements avec graisseurs	NA	NA	NA	Р	Р	Р	Р	М	М	М	М	М	S
042	Point fixe C.C.	S	S	S	S	S	М	М	S	S	S	S	S	S
043	Prises pour capteur de vibration (SPM)	NA	NA	NA	R	R	R	R	М	М	М	М	М	М
057	Roulements 2RS C.C. et C.O.C	NA	М	М	М	М	М	М	М	М	М	М	М	М
058	Roulement à billes à contact oblique C.C., charge sur l'arbre opposé palier ; blocage rotor pour le transport inclus	NA	NA	NA	М	М	М	М	М	М	М	М	М	М
059	Roulement à billes à contact oblique C.O.C., charge sur l'arbre vers palier ; blocage rotor pour le transport inclus	NA	NA	NA	М	М	М	М	М	М	М	М	М	М
188	Roulements de la série 63	NA	NA	NA	М	S	S	М	S	S	S	S	S	S
194	Roulements 2Z graissés à vie C.C. et C.O.C.	S	S	S	S	S	S	S	S	S	S	S	S	М
195	Roulements graissés à vie	S	S	S	S	S	S	S	S	S	S	S	S	NA
796	Graisseurs JIS B 1575 PT 1/8 Type A	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
797	Prises pour capteur de vibration (SPM) en acier inoxydable	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
798	Graisseurs en acier inoxydable	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
Exécu	tions diverses													
071	Exécution pour tour de refroidissement	NA	NA	NA	NA	NA	R	R	Р	Р	Р	Р	Р	Р
142	Connexion Manilla de l'enroulement	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
178	Visserie acier inoxydable / résistance aux acides	М	М	М	М	М	М	М	М	М	М	М	М	М
209	Tension ou fréquence non standard (bobinage spécial)	NA	NA	NA	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
217	Flasque C.C. en fonte (sur moteur aluminium)	NA	NA	R	М	М	М	М	S	S	S	S	S	S
425	Protection anticorrosion stator et rotor	NA	NA	NA	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
785	Tropicalisation renforcée	NA	NA	NA	NA	NA	NA	NA	R	R	R	R	R	Р
Systèn	ne de refroidissement													
053	Capot ventilateur métallique	NA	NA	R	М	М	М	М	S	S	S	S	S	S
068	Ventilateur métallique (alliage léger) : obligatoire pour températures ambiantes ≥ 60°C	NA	NA	М	М	М	М	М	М	М	М	М	М	М
075	Mode de refroidissement IC 418 (sans ventilateur)	R	R	R	Р	Р	Р	Р	М	М	М	М	М	М
183	Ventilation forcée (ventilateur axial, C.O.C)	NA	NA	М	М	М	М	Р	М	М	М	М	М	М
189	Ventilation forcée, IP44, 400 V, 50 Hz (ventilateur axial, C.O.C)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
794	Ventilateur pour niveau de bruit réduit (ventilateur 4 pôles)	NA	NA	NA	NA	NA	NA	NA	R	R	R	R	R	R
Accou	plement													
035	Montage demi-accouplement fourni par le client (alésage fini et équilibré)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	R
Schén	na d'encombrement													
	Schéma d'encombrement contractuel	R	R	R	R	R	R	R	М	М	М	М	М	М

¹⁾ Certaines options sont incompatibles entre elles.

NA = Non réalisable

S = Inclus en standard

⁼ Commande spécifique en fabrication uniquement

M = Avec modification d'un moteur en stock ou par commande

spécifique en fabrication, le nombre par commande peut être limité R = Sur demande

63 71 80 90 100 112 132 160 180 200 22 Trous de purge	250	280
Trous de purge		
· · · · ·		
065 Trous de purge existants obturés M M M M M M M M M M M M	М	М
Bornes de masse		
067 Borne de masse externe M M M M M M M M M M M M	М	М
Zones à risque		
Cf. catalogue «Moteurs Sécurité BT» pour des informations détaillées		
Résistances de réchauffage		
450 Résistance de réchauffage, 100-120V NA M M M M M M M M M M M	М	М
451 Résistance de réchauffage, 200-240V NA M M M M M M M M M M M M	М	М
Système d'isolation		
014 Isolation classe H des bobinages NA NA NA P P P P P P P	Р	Р
405 Isolation spéciale des bobinages pour alimentation par variateur R R R P P P P P P P P P de fréquence, tension nominale > 500 V	Р	Р
406 Bobinage spécial pour tension d'alimentation NA P P > 690 ≤ 1000 V	Р	Р
Exécution Marine		
sur consultation auprès d'ABB		
Formes de montage		
007 IM 3001 à bride, (normalisée IEC), à partir de IM 1001 NA NA NA NA NA NA NA M M M (B5 à partir de B3 en stock)	М	М
008 IM 2101 à pattes/bride trous taraudés (normalisée IEC), à partir R M M M M M M M NA NA NA de IM 1001 (B34 à partir de B3 en stock)	NA	NA
009 IM 2001 à pattes/bride trous lisses (normalisée IEC), à partir de R M M M M M M M M M M M M M M M M M M	М	М
047 IM 3601 à bride trous taraudés (normalisée IEC), à partir de IM R M M M M M M M NA NA NA 3001 (B14 à partir de B5 en stock)	NA	NA
048 IM 3001 à bride, (normalisée IEC), à partir de IM 3601 (B5 à R M M M M M M NA NA NA NA partir de B14 en stock).	NA	NA
066 Modification pour position de montage différente de IM B3 NA M M M M M M M M M M M M M	М	М
(1001), IM B5 (3001), B14 (3601), IM B35 (2001) & B34 (2101) 078 (IM 3601) à bride, bride C DIN NA	NA	NA
116 Bride spéciale R R R R R R R R R R R R R R R R R R R	R	R
200 Support anneau de bride NA M M M M M NA NA NA NA	NA	NA
218 Anneau de bride FT 85 NA M M NA	NA	NA
219 Anneau de bride FT 100 NA M M NA	NA	NA
220 Anneau de bride FF 100 NA M M NA NA NA NA NA NA NA NA NA	NA	NA
223 Anneau de bride FF 115 NA M M NA	NA	NA
224 Anneau de bride FT 115 NA M M M M NA NA NA NA NA NA	NA	NA
226 Anneau de bride FF 130 NA M M M M NA NA NA NA NA NA	NA	NA
227 Anneau de bride FT 130 NA M M M M NA NA NA NA NA NA	NA	NA
229 Bride FT 130 NA NA NA NA M M NA	NA	NA
233 Anneau de bride FF 165 NA M M M M NA NA NA NA NA NA	NA	NA
234 Anneau de bride FT 165 NA M M M M NA NA NA NA NA NA	NA	NA
235 Bride FF 165 NA	NA	NA
236 Bride FT 165 NA	NA	NA
243 Anneau de bride FF 215 NA NA NA NA M M M NA NA NA NA NA	NA	NA
244 Anneau de bride FT 215 NA	NA	NA
245 Bride FF 215 NA	NA	NA
253 Anneau de bride FF 265 NA	NA	NA

¹⁾ Certaines options sont incompatibles entre elles.

S = Inclus en standard

P = Commande spécifique en fabrication uniquement

M = Avec modification d'un moteur en stock ou par commande spécifique en fabrication, le nombre par commande peut être limité

R = Sur demande

NA = Non réalisable

Code	Option ¹⁾	Hau	teur d	'axe										
		63	71	80	90	100	112	132	160	180	200	225	250	280
254	Anneau de bride FT 265	NA	NA	NA	NA	NA	NA	М	NA	NA	NA	NA	NA	NA
255	Bride FF 265	NA	NA	NA	NA	NA	NA	М	NA	NA	NA	NA	NA	NA
260	Bride FT 115	NA	NA	NA	М	NA								
306	IM 1001 à pattes à partir de IM 3601 (B3 à partir de B14 en stock)	NA	NA	NA	NA	NA	NA	М	NA	NA	NA	NA	NA	NA
307	IM 2101 à pattes/bride trous taraudés (normalisée IEC), à partir de IM 3601 (B34 à partir de B14 en stock)	NA	NA	NA	NA	NA	NA	М	NA	NA	NA	NA	NA	NA
308	IM 2001 à pattes/bride trous lisses (normalisée IEC), à partir de IM 3601 (B35 à partir de B14 en stock)	NA	NA	NA	NA	NA	NA	М	NA	NA	NA	NA	NA	NA
309	IM 1001 à pattes à partir de IM 3001 (B3 à partir de B5 en stock)	NA	NA	NA	NA	NA	NA	М	NA	NA	NA	NA	NA	NA
310	IM 2101 à pattes/bride trous taraudés (normalisée IEC), à partir de IM 3001 (B34 à partir de B5 en stock)	NA	NA	NA	NA	NA	NA	М	NA	NA	NA	NA	NA	NA
311	IM 2001 à pattes/bride trous lisses (normalisée IEC), à partir de IM 3001 (B35 à partir de B5 en stock)	NA	NA	NA	NA	NA	NA	М	NA	NA	NA	NA	NA	NA
312	IM 1001 à pattes à partir de IM 2101 (B3 à partir de B34 en stock)	NA	NA	NA	NA	NA	NA	М	NA	NA	NA	NA	NA	NA
315	IM 2001 à pattes/bride trous lisses (normalisée IEC), à partir de IM 2101 (B35 à partir de B34 en stock)	NA	NA	NA	NA	NA	NA	M	NA	NA	NA	NA	NA	NA
316	IM 1001 à pattes à partir de IM 2001 (B3 à partir de B35 en stock)	NA	NA	NA	NA	NA	NA	М	NA	NA	NA	NA	NA	NA
319	IM 2101 à pattes/bride trous taraudés (normalisée IEC), à partir de IM 2001 (B34 à partir de B35 en stock)	NA	NA	NA	NA	NA	NA	М	NA	NA	NA	NA	NA	NA
Peintur	re													
114	Peinture de couleur spéciale, nuance AFNOR (RAL à indiquer)	М	М	М	М	М	М	М	М	М	М	М	М	М
168	Couche primaire uniquement	NA	NA	NA	Р	Р	Р	Р	NA	NA	NA	NA	NA	NA
179	Peinture aux spécifications spéciales	R	R	R	R	R	R	R	R	R	R	R	R	R
Protec	tion													
005	Capot de protection métallique pour marche verticale bout d'arbre vers le bas	NA	М	М	М	М	М	М	М	М	М	М	М	М
072	Etanchéité par joint radial C.C.	NA	М	М	М	М	М	М	М	М	М	М	М	М
158	Degré de protection IP 65	NA	NA	R	М	М	М	М	М	М	М	М	М	М
211	Protection contre les intempéries, IP xx W	NA	NA	NA	Р	Р	Р	Р	М	М	М	М	М	М
403	Degré de protection IP 56	NA	М	М	М	М	М	М	М	М	М	М	М	М
404	Degré de protection IP 56, sans ventilateur ni capot de ventilateur. Puissance sur demande	NA	NA	NA	Р	Р	Р	Р	NA	NA	NA	NA	NA	NA
784	Etanchéité par joint Gamma C.C.	NA	NA	R	М	М	М	М	М	М	М	М	М	М
Plaque	s signalétiques													
002	Retimbrage pour tension, fréquence et puissance, service continu ; toutes les valeurs doivent être spécifiées à la commande.	NA	М	M	М	М	М	М	М	М	М	М	М	M
003	Numéro de série individuel	NA	NA	S	S	S	S	S	S	S	S	S	S	S
004	Texte ajouté sur plaque signalétique standard (maxi 12 caractères sur ligne libre)	NA	NA	NA	М	М	М	М	М	М	М	М	М	М
095	Retimbrage pour puissance (tension et fréquence conservées), service intermittent ; toutes les valeurs doivent être spécifiées à la commande.	NA	NA	М	М	М	М	М	М	М	М	М	М	М
098	Plaque signalétique en acier inoxydable	NA	NA	М	М	М	М	М	М	М	М	М	М	М
135	Montage plaque d'identification supplémentaire, inox	NA	NA	NA	М	М	М	М	NA	NA	NA	NA	NA	NA
138	Montage plaque d'identification supplémentaire, aluminium	NA	NA	М	М	М	М	М	М	М	М	М	М	М
139	Plaque d'identification supplémentaire livrée non montée	NA	NA	М	М	М	М	М	М	М	М	М	М	М
160	Fixation plaque signalétique supplémentaire	NA	NA	NA	М	М	М	М	М	М	М	М	М	М

¹⁾ Certaines options sont incompatibles entre elles.

S = Inclus en standard

P = Commande spécifique en fabrication uniquement

M = Avec modification d'un moteur en stock ou par commande spécifique en fabrication, le nombre par commande peut être limité

R = Sur demande NA = Non réalisable

Code	Option ¹⁾	Haut	teur d	'axe										
		63	71	80	90	100	112	132	160	180	200	225	250	280
161	Plaque signalétique supplémentaire non montée	NA	NA	М	М	М	М	М	М	М	М	М	М	М
163	Plaque signalétique variateur de fréquence supplémentaire ; toutes les valeurs doivent être spécifiées à la commande.	NA	NA	R	R	R	R	R	М	М	М	М	M	М
198	Plaque signalétique en aluminium	NA	S	S	S	S	S	М	S	S	S	S	S	S
Arbre	et rotor													
069	Arbre à deux bouts selon catalogue, en matière standard	NA	NA	NA	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
070	Un ou deux bouts d'arbre spéciaux, en matière standard	NA	NA	NA	Р	Р	Р	R	R	R	R	R	R	R
131	Moteur fourni avec demi-clavette (clavette inférieure au diamètre de l'arbre)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	M	М
155	Bout d'arbre cylindrique, C.C., sans rainure de clavette	NA	NA	NA	R	R	R	R	NA	NA	NA	NA	NA	NA
165	Bout d'arbre avec rainure de clavette débouchante	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р	Р
410	Arbre en acier inoxydable/résistant aux acides (exécution standard ou non standard)	NA	NA	NA	Р	Р	Р	Р	Р	Р	Р	Р	Р	P
Norme	s et réglementations													
010	Exécution suivant normes CSA avec certificat	Р	Р	Р	Р	Р	Р	NA	М	М	М	М	М	М
011	Exécution rendement énergétique suivant normes CSA (code 010 inclus)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
331	Execution IE1 pour utilisation hors CE	NA	NA	М	М	М	М	М	М	М	М	М	М	М
500	Exécution label de rendement énergétique Corée	NA	NA	NA	NA	NA	NA	NA	R	R	R	R	R	R
540	Exécution label de rendement énergétique Chine	NA	NA	NA	NA	NA	NA	NA	R	R	R	R	R	R
778	Certification export/import GOST R (Russie)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
779	Certification export/import SASO (Arabie Saoudite)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
Sonde	s thermiques dans bobinage stator													
120	Sondes KTY 84-130 (1/phase) dans bobinage stator	NA	NA	NA	NA	NA	NA	NA	R	R	R	R	R	R
121	Sondes bilame à ouverture (3 en série), 130 °C, dans bobinage stator	NA	NA	М	М	М	М	М	М	М	М	М	М	М
122	Sondes bilame à ouverture (3 en série), 150 °C, dans bobinage stator	М	М	М	М	М	М	М	М	М	М	М	М	М
123	Sondes bilame à ouverture (3 en série), 170 °C, dans bobinage stator	NA	NA	М	M	М	М	М	М	М	М	М	М	М
124	Sondes bilame à ouverture (3 en série), 140 °C, dans bobinage stator	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
125	Sondes bilame à ouverture (2x3 en série), 150 °C, dans bobinage stator	NA	NA	NA	М	М	М	М	М	М	М	М	М	М
127	Sondes bilame à ouverture (3 en série, 130 °C et 3 en série, 150 °C) ; dans bobinage stator	NA	NA	NA	М	М	М	М	М	М	М	М	М	М
321	Sondes bilame à fermeture (3 en parallèle), 130 °C, dans bobinage stator	NA	NA	М	М	М	М	М	NA	NA	NA	NA	NA	NA
322	Sondes bilame à fermeture (3 en parallèle), 150 °C, dans bobinage stator	NA	NA	М	M	М	М	M	NA	NA	NA	NA	NA	NA
323	Sondes bilame à fermeture (3 en parallèle), 170 °C, dans bobinage stator	NA	NA	NA	Р	Р	Р	Р	NA	NA	NA	NA	NA	NA
325	Sondes bilame à fermeture, (2x3 en parallèle), 150 °C, dans bobinage stator	NA	NA	NA	Р	Р	M	М	NA	NA	NA	NA	NA	NA
327	Sondes bilame à fermeture, (3 en parallèle, 130 °C & 3 en parallèle, 150 °C), dans bobinage stator	NA	NA	NA	Р	Р	М	М	NA	NA	NA	NA	NA	NA
435	Sondes PTC (3 en série), 130 °C, dans bobinage stator ; uniquemement sur commande spécifique en fabrication pour moteurs bi-vitesse	М	М	М	М	M	М	М	М	М	М	М	М	М
436	Sondes PTC (3 en série), 150 °C, dans bobinage stator	М	М	М	М	М	М	М	S	S	S	S	S	S
437	Sondes PTC (3 en série), 170 °C, dans bobinage stator ; uniquemement sur commande spécifique en fabrication pour moteurs bi-vitesse	NA	NA	М	М	M	М	М	М	М	М	М	М	М
1) On what is	os antions sont incompatibles entre elles	0 -		o on ot										

¹⁾ Certaines options sont incompatibles entre elles.

S = Inclus en standard
P = Commande spécifique en fabrication uniquement
M = Avec modification d'un moteur en stock ou par commande spécifique en fabrication, le nombre par commande peut être limité

R = Sur demande NA = Non réalisable

Code	Option ¹⁾	Hau	teur d	'axe										
Oouc	- Copilon	63	71	80	90	100	112	132	160	180	200	225	250	280
439	Sondes PTC (2x3 en série), 150 °C, dans bobinage stator; uniquemement sur commande spécifique en fabrication pour moteurs bi-vitesse	NA	NA	NA	М	М	М	M	М	М	М	М	М	М
440	Sondes PTC (3 en série, 110 °C & 3 en série, 130 °C), dans bobinage stator	NA	NA	NA	Р	Р	Р	Р	NA	NA	NA	NA	NA	NA
441	Sondes PTC (3 en série, 130 °C et 3 en série, 150 °C, dans bobinage stator ; uniquemement sur commande spécifique en fabrication pour moteurs bi-vitesse	NA	NA	NA	М	М	М	М	М	М	М	М	M	М
442	Sondes PTC (3 en série, 150 °C et 3 en série, 170 °C, dans bobinage stator ; uniquemement sur commande spécifique en fabrication pour moteurs bi-vitesse	NA	NA	NA	Р	Р	М	М	М	М	М	М	М	М
445	Sondes PT100 (1/phase) dans bobinage stator (2 fils)	NA	NA	NA	R	Р	Р	Р	М	М	М	М	М	М
446	Sondes PT100 (2/phase) dans bobinage stator (2 fils)	NA	NA	NA	R	R	R	R	М	М	М	М	М	М
Boîte à	bornes			-										
015	Moteur en couplage Δ ; uniquement moteur monovitesse	NA	NA	М	М	М	М	М	М	М	М	М	М	М
016	9 bornes dans boîte à bornes	NA	NA	NA	Р	Р	Р	Р	NA	NA	NA	NA	NA	NA
017	Moteur en couplage Y; uniquement moteur monovitesse	NA	NA	М	М	М	М	М	М	М	М	М	М	М
019	Boîte à bornes de taille supérieure au format standard	NA	NA	NA	NA	NA	NA	NA	R	R	М	М	М	М
021	Boîte à bornes sur le côté gauche (vue C.C.)	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р
136	Sortie de câble, boîte à bornes standard	NA	NA	NA	Р	Р	Р	Р	R	R	R	R	R	NA
137	Sortie de câble, boîte à bornes basse, "câble souple"	NA	NA	NA	Р	Р	Р	Р	R	R	R	R	R	NA
180	Boîte à bornes sur le côté droit (vue C.C.)	NA	NA	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р
230	Presse-étoupes standards (métal)	NA	М	М	М	М	М	М	М	М	М	М	М	М
375	Presse-étoupes standard (plastique)	NA	М	М	М	М	М	М	NA	NA	NA	NA	NA	NA
376	Deux presse-étoupes standards (plastique)	NA	М	М	М	М	М	М	NA	NA	NA	NA	NA	NA
418	Boîte à bornes séparée pour auxiliaires, matière standard	NA	NA	NA	NA	R	R	R	М	М	М	М	М	М
467	Boîte à bornes plus basse que format standard ; câble de 2 m inclus	NA	NA	NA	NA	NA	NA	NA	Р	Р	Р	Р	Р	Р
729	Plaque d'entrée de câble non percée en aluminium pour presse-étoupes	NA	NA	NA	NA	NA	NA	NA	NA	NA	М	М	М	М
731	Deux presse-étoupes standards	NA	М	М	М	М	М	М	М	М	М	М	М	М
740	Exécution pour presse-étoupes au pas PG	NA	NA	NA	NA	NA	NA	NA	R	R	R	R	R	NA
Essais														
140	Confirmation d'essais	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
145	Certificat d'essai de type sur moteur identique ; 400 V 50 Hz	М	М	М	М	М	М	М	М	М	М	М	М	М
146	Certificat d'essai de type sur un moteur de la commande	NA	NA	NA	М	М	М	М	М	М	М	М	М	М
147	Certificat d'essai de type sur un moteur de la commande, essai en présence du client	NA	NA	NA	М	М	М	М	М	М	М	М	М	М
148	Certificat d'essais de fin de chaîne	М	М	М	М	М	М	М	М	М	М	М	М	М
149	Essai spécifique à préciser par le client	R	R	R	R	R	R	R	R	R	R	R	R	R
153	Essais réduits pour organisme d'agrément	NA	М	М	М	М	М	М	М	М	М	М	М	М
221	Essai de type et essai en charge multipoint avec certificat sur un moteur de la commande	NA	NA	NA	Р	Р	Р	Р	М	М	М	М	М	М
222	Courbe couple/vitesse, essai de type et essai en charge multipoint avec certificat sur un moteur de la commande	NA	NA	NA	Р	Р	Р	Р	М	М	М	М	М	М
760	Essai vibratoire	NA	NA	NA	Р	Р	Р	Р	М	М	М	М	М	М
762	Essai du niveau de bruit sur un moteur de la commande	NA	NA	М	М	М	М	М	М	М	М	М	М	М

¹⁾ Certaines options sont incompatibles entre elles.

S = Inclus en standard P = Commande spécifique en fabrication uniquement

M = Avec modification d'un moteur en stock ou par commande spécifique en fabrication, le nombre par commande peut être limité

R = Sur demande NA = Non réalisable

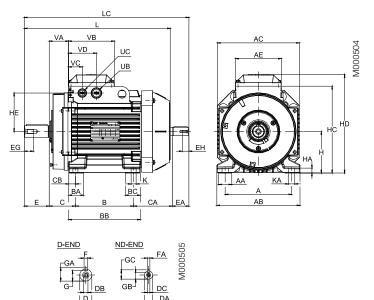
Code	Option ¹⁾	Haut	teur d	axe										
		63	71	80	90	100	112	132	160	180	200	225	250	280
Comm	ande en vitesse variable													
470	Moteur préparé pour codeur à impulsions à arbre creux (équivalent Leine&Linde)	R	R	R	R	R	R	R	М	М	М	M	М	М
472	Codeur à impulsions 1024 points (L&L 861007455-1024)	R	R	R	R	R	R	Ρ	М	М	М	М	М	М
473	Codeur à impulsions 2048 points (L&L 861007455-2048)	R	R	R	R	R	R	Р	М	М	М	М	М	М
474	Ventilation forcée (ventilateur axial, C.O.C.) et moteur préparé pour codeur à impulsions à arbre creux (équivalent L&L)	R	R	R	R	R	R	R	М	М	М	М	М	М
476	Ventilation forcée (ventilateur axial, C.O.C.) et codeur à impulsions 1024 points (L&L 861007455-1024)	R	R	R	R	R	R	R	М	М	М	М	М	М
477	Ventilation forcée (ventilateur axial, C.O.C.) et codeur à impulsions 2048 points (L&L 861007455-2048)	R	R	R	R	R	R	R	М	М	М	М	М	М
570	Moteur préparé pour codeur à impulsions à arbre creux (L&L 503)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
572	Codeur à impulsions 1024 (L&L 503)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
573	Codeur à impulsions 2048 (L&L 503)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
574	Ventilation forcée (ventilateur axial, C.O.C.) et moteur préparé pour codeur à impulsions à arbre creux (L&L 503)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
576	Ventilation forcée (ventilateur axial, C.O.C.) et codeur à impulsions 1024 (L&L 503)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
577	Ventilation forcée (ventilateur axial, C.O.C.) et codeur à impulsions 2048 (L&L 503)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
580	Ventilation forcée, IP44, 400 V, 50 Hz (ventilateur axial, C.O.C.) et codeur à impulsions 1024 (L&L 503)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
581	Ventilation forcée, IP44, 400 V, 50 Hz (ventilateur axial, C.O.C.) et codeur à impulsions 2048 (L&L 503)	NA	NA	NA	NA	NA	NA	NA	М	М	М	М	М	М
661	Codeur à impulsions 1024 monté, Hohner série 59, 11-30V	NA	R	R	Р	Р	Р	Р	NA	NA	NA	NA	NA	NA
662	Codeur à impulsions 2048 monté, Hohner série 59, 11-30V	NA	R	R	Р	Р	Р	Р	NA	NA	NA	NA	NA	NA
701	Roulement isolé C.O.C.	NA	NA	NA	NA	NA	NA	NA	Р	Р	М	М	М	М
704	Presse-étoupes CEM	NA	NA	NA	М	М	М	М	М	М	М	М	М	М

¹⁾ Certaines options sont incompatibles entre elles.

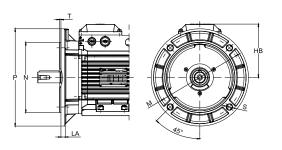
S = Inclus en standard

P = Commande spécifique en fabrication uniquement

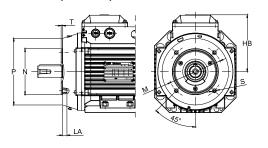
M = Avec modification d'un moteur en stock ou par commande spécifique en fabrication, le nombre par commande peut être limité


R = Sur demande

NA = Non réalisable


Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 63-112

Schémas d'encombrement


Moteur à pattes; IM B3 (IM 1001), IM 1002

Moteur à bride, trous lisses; IM B5 (IM 3001), IM 3002

Moteur à bride, trous taraudés ; IM B14 (IM 3601)

IM B3 (IM 1001), IM 1002

Hauteur																						
d'axe	Α	AA	AB	AC	AE	В	ВА	BB	ВС	С	CA	СВ	D	DA	DB	DC	Е	EΑ	EG	EH	F	FA
63	100	25	120	120	85	80	32	98	32	40	74	10	11	11	M4	M4	23	23	10	10	4	4
71	112	23	136	130	97	90	24.5	110	24.5	45	79.5	10	14	11	M5	M4	30	23	12.5	10	5	4
80	125	27	154	150	97	100	32	125	32	50	80.5	12.5	19	14	M6	M5	40	30	16	12.5	6	5
90S	140	27	170	177	110	100	32	125	32	56	83.5	12.5	24	14	M8	M5	50	30	19	12.5	8	5
90L	140	27	170	177	110	125	32	150	32	56	83.5	12.5	24	14	M8	M5	50	30	19	12.5	8	5
90 LD	140	27	170	177	110	125	32	150	32	56	105.5	12.5	24	14	M8	M5	50	30	19	12.5	8	5
100	160	32	200	197	110	140	36	172	36	63	93	16	28	19	M10	M6	60	40	22	16	8	6
112	190	32	230	197	110	140	36	172	36	70	136	16	28	19	M10	M6	60	40	22	16	8	6

Hauteur																			
d'axe	G	GA	GB	GC	Н	НА	HC	HD	HE	K	KA	L	LC	UB	UC	VA	VB	VC	VD
63	8.5	12.5	8.5	12.5	63	7	120	151	50	7	11	214	237	pg11	M16x1.5	31	92	30.5	61.5
71	11	16	8.5	12.5	71	9	151	180	63.5	7	11	240	267	M20	M20	35			
80	15.5	21.5	11	16	80	10	164.5	193.5	68	10	10	265.5	300.5	M20	M20	37.5	97	30.5	66.5
90S	20	27	11	16	90	10	189	217	82.5	10	14	284.5	319.5	M25	M20	43.5	110	33	67
90L	20	27	11	16	90	10	189	217	82.5	10	14	309.5	344.5	M25	M20	43.5	110	33	67
90 LD	20	27	11	16	90	10	189	217	82.5	10	14	331.5	366.5	M25	M20	43.5	110	33	67
100	24	31	15.5	21.5	100	12	209	237	92.5	12	15	351	396	M25	M20	46.5	110	33	67
112	24	31	15.5	21.5	112	12	221	249	92.5	12	15	393	436	M25	M20	46.5	110	33	67

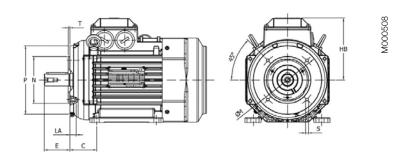
	D.	(1840004)		0000
IIVI	Bo	(IM3001),	IIVI	3002

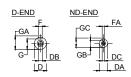
Hauteur d'axe	НВ	LA	М	N	Р	S	Т
63	103	10	100	80	120	7	3
71	109	9.5	130	130	160	10	3.5
80	113.5	5 10	165	130	200	12	3.5
90S	127	10	165	130	200	12	3.5
90L	127	10	165	130	200	12	3.5
90 LD	127	10	165	130	200	12	3.5
100	137	11	215	180	250	15	4
112	137	11	215	180	250	15	4

Tolérances:

A,B	±0,8	Н	+0 -0,5
D, DA	ISO j6	N	ISO j6
F, FA	ISO h9	C, CA	±0.8

IM B14 (IM 3601), IM 3602


Hauteu	r						
d'axe	HB	LA	М	Ν	Р	S	Т
63	103	10	65	50	80	M5	2.5
71	109	11	85	70	105	M6	3
80	113.5	11	100	80	120	M6	3
90S	127	13	115	95	140	M8	3
90L	127	13	115	95	140	M8	3
90 LD	127	13	115	95	140	M8	3
100	137	14	130	110	160	M8	3.5
112	137	14	130	110	160	M8	3.5


Dimensions en mm.

Pour les schémas détaillés, rendez-vous sur notre site "www.abb.com/motors&generators" ou contactez ABB.

Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 63-112 Schémas d'encombrement

Moteur à pattes et à bride, trous lisses ; IM B35 (IM 2001), IM 2002

IM B35 (IM 2001), IM 2002; IM B34 (IM2101), IM 2102

Hauteur																						
d'axe	Α	AA	AB	AC	ΑE	В	ВА	BB	вс	С	CA	СВ	D	DA	DB	DC	Е	EΑ	EG	EH	F	FA
63	100	25	120	120	85	80	32	98	32	40	74	10	11	11	M4	M4	23	23	10	10	4	4
71	112	23	136	130	97	90	24.5	110	24.5	45	79.5	10	14	11	M5	M4	30	23	12.5	10	5	4
80	125	27	154	150	97	100	32	125	32	50	80.5	12.5	19	14	M6	M5	40	30	16	12.5	6	5
908	140	27	170	177	110	100	32	125	32	56	83.5	12.5	24	14	M8	M5	50	30	19	12.5	8	5
90L	140	27	170	177	110	125	32	150	32	56	83.5	12.5	24	14	M8	M5	50	30	19	12.5	8	5
90 LD	140	27	170	177	110	125	32	150	32	56	105.5	12.5	24	14	M8	M5	50	30	19	12.5	8	5
100	160	32	200	197	110	140	36	172	36	63	93	16	28	19	M10	M6	60	40	22	16	8	6
112	190	32	230	197	110	140	36	172	36	70	136	16	28	19	M10	M6	60	40	22	16	8	6

Hauteur																			
d'axe	G	GA	GB	GC	Н	НА	HC	HD	HE	K	KA	L	LC	UB	UC	VA	VB	VC	VD
63	8.5	12.5	8.5	12.5	63	7	120	151	50	7	11	214	237	pg11	M16x1.5	31	92	30.5	61.5
71	11	16	8.5	12.5	71	9	151	180	63.5	7	11	240	267	M20	M20	35			
80	15.5	21.5	11	16	80	10	164.5	193.5	68	10	10	265.5	300.5	M20	M20	37.5	97	30.5	66.5
90S	20	27	11	16	90	10	189	217	82.5	10	14	284.5	319.5	M25	M20	43.5	110	33	67
90L	20	27	11	16	90	10	189	217	82.5	10	14	309.5	344.5	M25	M20	43.5	110	33	67
90 LD	20	27	11	16	90	10	189	217	82.5	10	14	331.5	366.5	M25	M20	43.5	110	33	67
100	24	31	15.5	21.5	100	12	209	237	92.5	12	15	351	396	M25	M20	46.5	110	33	67
112	24	31	15.5	21.5	112	12	221	249	92.5	12	15	393	436	M25	M20	46.5	110	33	67

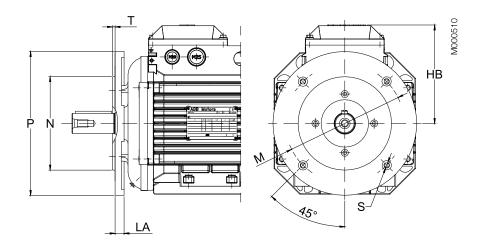
IM B35 (IM2001), IM 2002									
Hauteur									
d'axe	HB	LA	М	Ν	Р	S	Т		
63	103	10	100	80	120	7	3		
71	109	9.5	130	130	160	10	3.5		
80	113.5	5 10	165	130	200	12	3.5		
90S	127	10	165	130	200	12	3.5		
90L	127	10	165	130	200	12	3.5		
90 LD	127	10	165	130	200	12	3.5		
100	137	11	215	180	250	15	4		

IM B34 (IM 2101), IM 2102										
Hauteur										
d'axe	НВ	LA	М	N	Р	S	Т			
63	103	10	65	50	80	M5	2.5			
71	109	11	85	70	105	M6	3			
80	113.5	11	100	80	120	M6	3			
90S	127	13	115	95	140	M8	3			
90L	127	13	115	95	140	M8	3			
90 LD	127	13	115	95	140	M8	3			
100	137	14	130	110	160	M8	3.5			
112	137	14	130	110	160	M8	3.5			

112

A,B	±0,8	Н	+0 -0,5
D, DA	ISO j6	N	ISO j6
F, FA	ISO h9	C, CA	±0,8

Dimensions en mm.


Pour les schémas détaillés, rendez-vous sur notre site "www.abb.com/motors&generators" ou contactez ABB.

215 180

250 15

Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 71-132

Schémas d'encombrement Conception spéciale avec brides en deux parties

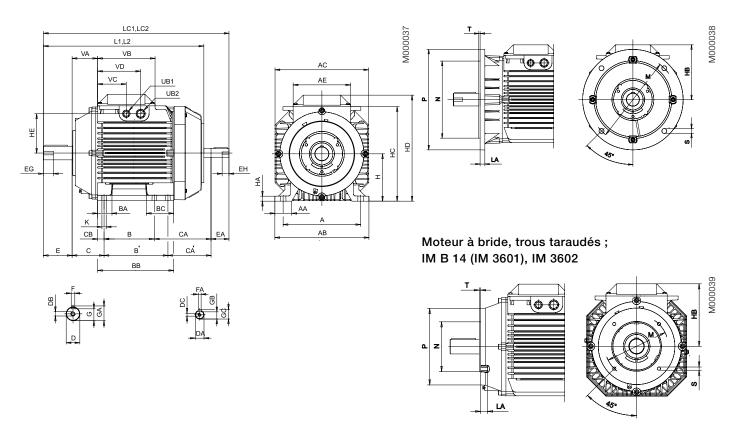
Hauteur	Bride IEC	Taille b	oride						Code opti	on
d'axe		HB	Р	М	Ν	LA	S	Т	FF	FT
71	FT85	105	105	85	70	7.5	M6	2.5	-	218
	FF100/FT100	105	120	100	80	7.5	M6	3	220	219
	FF115/FT115	105	140	115	95	9.5	M8	3	223	224
	FF130/FT130	105	160	130	110	9.5	M8	3.5	226	227
	FF165/FT165	105	200	165	130	10.5	M10	3.5	233	234
80	FT85	110	105	85	70	7.5	M6	2.5	-	218
	FF100/FT100	110	120	100	80	7.5	M6	3	220	219
	FF115/FT115	110	140	115	95	9.5	M8	3	223	224
	FF130/FT130	110	160	130	110	9.5	M8	3.5	226	227
	FF165/FT165	110	200	165	130	10.5	M10	3.5	233	234
90	FT85	127	105	85	70	7.5	M6	2.5	-	218
	FF100/FT100	127	120	100	80	7.5	M6	3	220	219
	FF115/FT115	127	140	115	95	9.5	M8	3	223	224
	FF130/FT130	127	160	130	110	9.5	M8	3.5	226	227
	FF165/FT165	127	200	165	130	10.5	M10	3.5	233	234
100	FF130/FT130	137	160	130	110	9.5	M8	3.5	226	227
	FF165/FT165	137	200	165	130	10.5	M10	3.5	233	234
	FF215/FT215	137	250	215	180	12.5	M12	4	243	244
112	FF130/FT130	137	160	130	110	9.5	M8	3.5	226	227
	FF165/FT165	137	200	165	130	10.5	M10	3.5	233	234
	FF215/FT215	137	250	215	180	12.5	M12	4	243	244
132	FF215/FT215	164	250	215	180	12.5	M12	4	243	244
	FF265/FT265	164	300	265	230	16	M12	4	253	254

Tolérances:

ISO j6

1) Le code option 200 «Support anneau de bride» doit être ajouté lorsque les codes options du tableau sont utilisés.

²⁾ Brides avec trous lisses (FF) ou taraudés (FT) pour vis spécifiées.


Dimensions en mm.

Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 132

Schémas d'encombrement

Moteur à pattes ; IM B 3 (IM 1001), IM 1002

Moteur à bride, trous lisses ; IM B 5 (IM 3001), IM 3002

IM	B3	ίM	1001),	IM	1002
1171	DO	(1171	1001,	1171	1002

Hauteur	r																							
d'axe	Α	AA	AB	AC	ΑE	В	B'	BA	BB	вс	С	CA	CA'	CB	D	DA	DB	DC	Ε	EΑ	EG	EH	F	FA
132 1)	216	47	262	261	160	140	178	40	212	76	89	158	120	18	38	24	M12	M8	80	50	28	19	10	8
132 2)	216	47	262	261	160	140	178	40	212	76	89	261	223	18	38	24	M12	M8	80	50	28	19	10	8

Hauteur																						
d'axe	G	GA	GB	GC	Н	НА	HC	HD	HE	HF	Κ	KA	L	LC	UB	UC	UD	VA	VB	VC	VD	VE
132 1)	33	41	20	27	132	14	263.5	295.5	109.5		12	15	447	517	M20	M25		71	160	80	120	
132 ²⁾	33	41	20	27	132	14	287	321	123.5	143.5	12	15	550	620	M40	M32	M12	71	160	42	102	136

IM B5 (IM3001), IM 3002

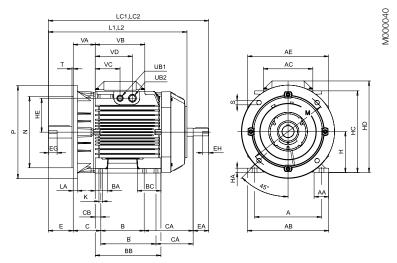
Hauteur								
d'axe	HB	LA	М	Ν	Р	S	Т	
132 1)	163.5	14	265	230	300	14.5	4	
132 2)	189	14	265	230	300	14.5	4	

¹⁾ Tous les types sauf 2) 2) SM

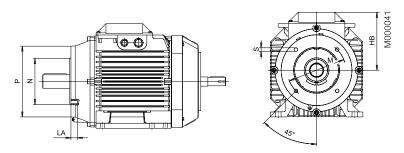
IM B14 (IM 3601), IM 3602

Hauteur							
d'axe	HB	LA	М	Ν	Р	S	Т
132 1)	163.5	14.5	165	130	200	M10	3.5
132 ²⁾	189	14.5	165	130	200	M10	3.5

Tolérances :


A, B	ISO js14
C, CA	+2 -2
D	ISO k6
DA	ISO j6
F, FA	ISO h9
Н	+0 -0,5
N	ISO j6

Dimensions en mm.


Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 132

Schémas d'encombrement

Moteur à pattes et à bride, trous lisses ; IM B 35 (IM 2001), IM 2002

Moteur à pattes et à bride, trous taraudés ; IM B 34 (IM 2101), IM 2102

IM B3 (IM 2001), IM 2002

Hauteur																								
d'axe	Α	AA	AB	AC	ΑE	В	B'	BA	BB	BC	С	CA	CA'	CB	D	DA	DB	DC	Е	EA	EG	EH	F	FA
132 ¹⁾	216	47	262	261	160	140	178	40	212	76	89	158	120	18	38	24	M12	M8	80	50	28	19	10	8
132 ²⁾	216	47	262	261	160	140	178	40	212	76	89	261	223	18	38	24	M12	M8	80	50	28	19	10	8

Hauteur																						
d'axe	G	GA	GB	GC	Н	HA	HC	HD	HE	HF	K	KA	L	LC	UB	UC	UD	VA	VB	VC	VD	VE
132 1)	33	41	20	27	132	14	263.5	295.5	109.5		12	15	447	517	M20	M25		71	160	80	120	
132 ²⁾	33	41	20	27	132	14	287	321	123.5	143.5	12	15	550	620	M40	M32	M12	71	160	42	102	136

IM B35 (IM 2001)

Hauteur								
d'axe	HB	LA	М	N	Р	S	Т	
132 1)	163,5	14	265	230	300	14,5	4	
132 ²⁾	189	14	265	230	300	14,5	4	

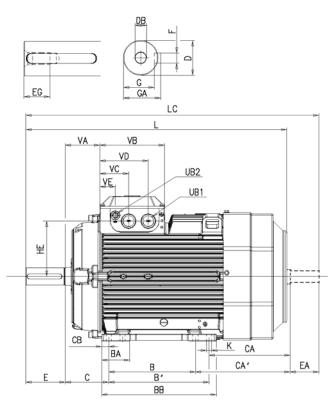
132 2)	189	14	265	230
1) Tous les t	vpes sauf 2)			

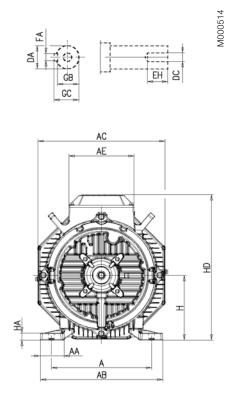
²⁾ SM_

Tolérances:

А, В	ISO js14
C, CA	+2 -2
D	ISO k6
DA	ISO j6
F, FA	ISO h9
Н	+0 -0,5
N	ISO j6

IM B34 (IM 2101)	
IIVI B34 (IIVI 2101)	
Hautour	


Hauteur							
d'axe	HB	LA	М	N	Р	S	Т
132 1)	163,5	14,5	165	130	200	M10	3,5
132 ²⁾	189	14,5	165	130	200	M10	3,5


Dimensions en mm.

Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 160-180

Schémas d'encombrement

Moteur à pattes ; IM B3 (IM 1001), IM 1002

IM B3 (IM 1001), IM 1002

Hauteur																						
d'axe	Α	AA	AB	AC	ΑE	В	B'	ВА	BB	С	CA	CA'	CB	D	DA	DB	DC	Е	EΑ	EG	EH	F
160 ²⁾	254	54	310	323	180	210	254	84	294	108	172	128	20	42	32	M16	M12	110	80	36	28	12
160 ³⁾	254	54	310	323	180	210	254	84	294	108	269	225	20	42	32	M16	M12	110	80	36	28	12
180	279	68	341	354	180	241	279	78	319	121	263	225	20	48	32	M16	M12	110	80	36	28	14

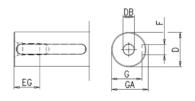
Hauteur																				
d'axe	FA	G	GA	GB	GC	Н	НА	HC	HD	HE	K	L	LC	UB11)	UB21)	VA	VB	VC	VD	VE
160 ²⁾	10	37	45	27	35	160	20	342	370	139	15	584	680	2*M40	M16	88.5	180	80	135.5	43
160 ³⁾	10	37	45	27	35	160	20	342	370	139	15	681	777	2*M40	M16	88.5	180	80	135.5	43
180	10	42.5	51.5	27	35	180	20	369	405	154	15	726	815	2*M40	M16	88.5	180	80	135.5	43

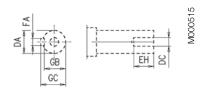
¹⁾ Ouvertures prédéfonçables

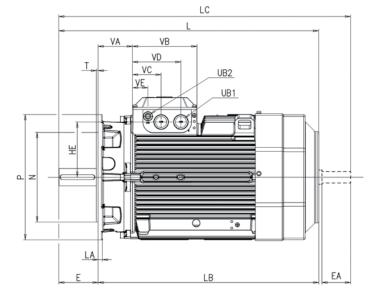
Tolérances :

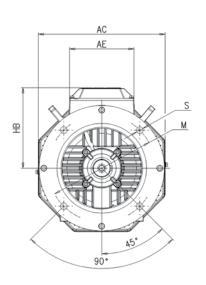
A, B ISO js14
C, CA ± 0.8
D, DA ISO k6
F, FA ISO h9
H +0 -0,5

Dimensions en mm.


²⁾ MLA-2 et MLB-2 ; MLA-4 pôles ; MLA-6 pôles ; MLA-8 et MLB-8 pôles


³ Autres exécutions, à savoir MLC-2, MLD-2 et MLE-2 pôles ; MLB-4, MLC-4 et MLD-4 pôles ; MLC-8 pôles


Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 160-180


Schémas d'encombrement

Moteur à bride ; IM B5 (IM 3001), IM 3002

IM B5 (IM 3001), IM 3002

Hauteur	r																	
d'axe	AC	AE	D	DA	DB	DC	E4)	EA	EG	EH	F	FA	G	GA	GB	GC	HB	HE
160 ²⁾	323	180	42	32	M16	M12	110	80	36	28	12	10	37	45	27	35	210	139
160 ³⁾	323	180	42	32	M16	M12	110	80	36	28	12	10	37	45	27	35	210	139
180	354	180	48	32	M16	M12	110	80	36	28	14	10	42.5	51.5	27	35	225	154

Hauteur																
d'axe	L	LA	LB	LC	М	Ν	Р	S	Т	UB11)	UB21)	VA	VB	VC	VD	VE
160 ²⁾	584	20	474	680	300	250	350	19	5	2*M40	M16	88.5	180	43	80	135.5
160 ³⁾	681	20	571	777	300	250	350	19	5	2*M40	M16	88.5	180	43	80	135.5
180	726	15	616	815	300	250	350	19	5	2*M40	M16	88.5	180	43	80	135.5

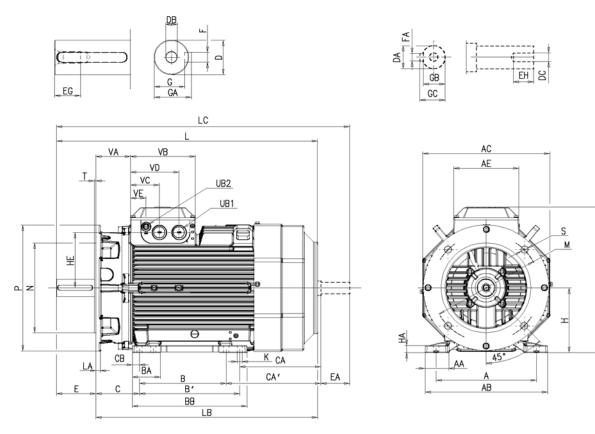
¹⁾ Ouvertures prédéfonçables

²⁾ MLA-2 et MLB-2 ; MLA-4 pôles ; MLA-6 pôles ; MLA-8 et MLB-8 pôles

³⁾ Autres exécutions, à savoir MLC-2, MLD-2 et MLE-2 pôles ; MLB-4, MLC-4 et MLD-4 pôles ; MLC-8 pôles

⁴⁾ L'épaulement du bout d'arbre et la surface de contact de la bride sont dans le même plan.

Tolérances


D, DA ISO k6 F, FA ISO h9 ISO j6

Dimensions en mm.

Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 160-180

Schémas d'encombrement

Moteur à pattes et à bride ; IM B35 (IM 2001), IM 2002

	IM	B35	(IM	2001),	IM	2002
--	----	-----	-----	--------	----	------

IIV DOG (IIV	11 2001),	1101 200															
Hauteur																	
d'axe	Α	AA	AB	AC	ΑE	В	B'	BA	BB	С	CA	CA'	CB	D	DA	DB	DC
160 ²⁾	254	54	310	323	180	210	254	84	294	108	172	128	20	42	32	M16	M12
160 ³⁾	254	54	310	323	180	210	254	84	294	108	269	225	20	42	32	M16	M12
180	279	68	341	354	180	241	279	78	319	121	263	225	20	48	32	M16	M12

Hauteur																	
d'axe	E ⁴⁾	EA	EG	EH	F	FA	G	GA	GB	GC	Н	HA	HC	HD	HE	K	L
160 ²⁾	110	80	36	28	12	10	37	45	27	35	160	20	342	370	139	14.5	584
160 ³⁾	110	80	36	28	12	10	37	45	27	35	160	20	342	370	139	14.5	681
180	110	80	36	28	14	10	42.5	51.5	27	35	180	20	369	405	154	14.5	726

Hauteur															
d'axe	LA	LB	LC	М	Ν	Р	S	Т	UB1 ¹⁾	UB21)	VA	VB	VC	VD	VE
160 ²⁾	20	474	680	300	250	350	19	5	2*M40	M16	88.5	180	80	135.5	43
160 ³⁾	20	571	777	300	250	350	19	5	2*M40	M16	88.5	180	80	135.5	43
180	15	616	815	300	250	350	19	5	2*M40	M16	88.5	180	80	135.5	43

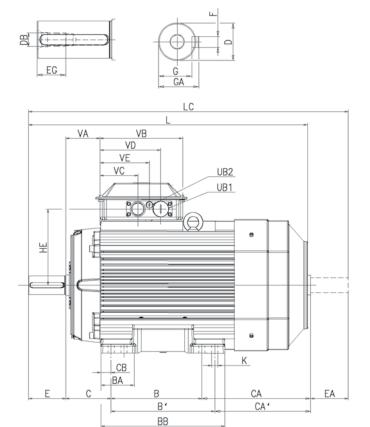
¹⁾ Ouvertures prédéfonçables

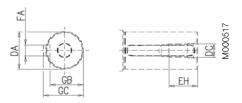
Tolérances :

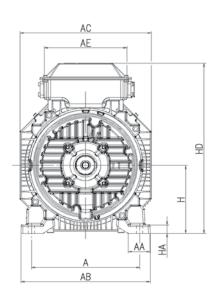
A, B ISO js14
C, CA ±8
D, DA ISO k6
F, FA ISO h9
H +0 - 0,5
N ISO j6

Dimensions en mm.

 $^{^{\}mbox{\tiny 2)}}$ MLA-2 et MLB-2 ; MLA-4 pôles ; MLA-6 pôles ; MLA-8 et MLB-8 pôles


³⁾ Autres exécutions, à savoir MLC-2, MLD-2 et MLE-2 pôles ; MLB-4, MLC-4 et MLD-4 pôles ; MLC-8 pôles


⁴⁾ L'épaulement du bout d'arbre et la surface de contact de la bride sont dans le même plan.


Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 200-225

Schémas d'encombrement

Moteur à pattes ; IM B3 (IM 1001), IM 1002

IM B3 (IM 1001), IM 1002

	00.7,																							
Hauteur	Nombre																							
d'axe	de pôles	Α	AA	AB	AC	ΑE	В	B'	ВА	BB	С	CA	CA'	CB	D	DA	DB	DC	Е	EA	EG	EH	F	FA
200		318	64	380	386	243	267	305	112	365	133	314	276	30	55	45	M20	M16	110	110	42	36	16	14
225	2	356	69	418	425	243	286	311	102	365	149	314	289	24.5	55	55	M20	M20	110	110	42	42	16	14
225	4-8	356	69	418	425	243	286	311	102	365	149	314	289	24.5	60	55	M20	M20	140	110	42	42	18	16

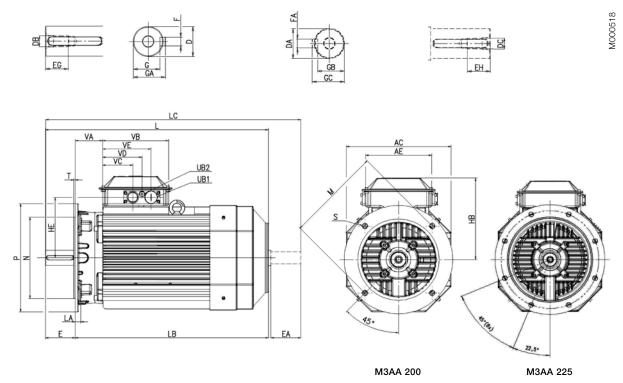
Hauteur	Nombre																						
d'axe	de pôles	G	GA	GB	GC	Н	НА	HD ²⁾	HD ³⁾	HE ²⁾	HE ³⁾	K	L	LC	UB ¹⁾	VA	VB	VC ²⁾	VC ³⁾	VD ²⁾	VD ³⁾	VE ²⁾	VE ²⁾
200		49	59	39.5	48.5	200	25	500	532	224	239	18	821	934	2xFL13	101	243	112	77	179	167	145	122
225	2	49	59	49	59	225	25	547	579	244.5	260	18	850	971	2xFL13	93.5	243	112	77	179	167	145	122
225	4-8	53	64	49	59	225	25	547	579	244 5	260	18	880	1001	2xFI 13	93.5	243	112	77	179	167	145	122

¹⁾ Passage bride avec bride taraudée FL 13, avec orifices d'entrée taraudés obturés Moteurs mono et bi-vitesse : 2 x M40 + M16

Moteurs pour 230 VD 50 Hz ou 225 SMC-2, 225 SMD-2, 225 SMD-4 avec bride taraudée FL21 et 2 x M63 + M16

Tolérances :

A,B ISO js14 C, CA ± 0,8 D 55-65 ISO m6 DA 45-55 ISO k6 ISO h9 F, FA +0 -0,5


Dimensions en mm.

Pour passage bride FL13: 2 x M40 + M16
Pour passage bride de très grand format FL21: 2 x M63 + M16

Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 200-225

Schémas d'encombrement

Moteur à bride ; IM B5 (IM 3001), IM 3002

IM B5 (IM 3001), IM 3002

Hauteur	Nombre																				
d'axe	de pôles	AC	ΑE	D	DA	DB	DC	E1)	EA	EG	EH	F	FA	G	GA	GB	GC	HB ³⁾	HB ⁴⁾	HE ³⁾	HE ⁴⁾
200		386	243	55	45	M20	M16	110	110	42	36	14	16	49	59	39.5	48.5	300	332	224	239
225	2	425	243	55	55	M20	M20	110	110	42	42	16	16	49	59	49	59	300	332	244	260
225	4-8	425	243	60	55	M20	M20	140	110	42	42	16	16	53	64	49	59	322	354	244	260

Hauteur	Nombre																		
d'axe	de pôles	L	LA	LB	LC	М	Ν	Р	S	Т	UB ²⁾	VA	VB	VC ³⁾	VC ⁴⁾	VD ³⁾	VD ⁴⁾	VE ³⁾	VE ⁴⁾
200		821	20	711	934	350	300	400	19	5	2xFL13	101	243	112	77	179	167	145	122
225	2	850	22	740	971	400	350	450	19	5	2xFL13	93.5	243	112	77	179	167	145	122
225	4-8	880	22	740	1001	400	350	450	19	5	2xFL13	93.5	243	112	77	179	167	145	122

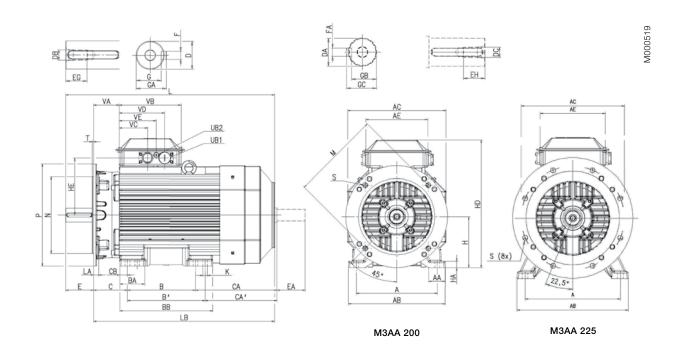
¹⁾ L'épaulement du bout d'arbre et la surface de contact de la bride sont dans le même plan..

Moteurs pour 230 VD 50 Hz ou 225 SMC-2, 225 SMD-2, 225 SMD-4 avec bride taraudée FL21 et 2 x M63 + M16

Tolérances :

D 55-65 ISO m6
DA 45-55 ISO k6
F, FA ISO h9
N ISO j6

Dimensions en mm.


Passage bride avec bride taraudée FL 13, avec orifices d'entrée taraudés obturés Moteurs mono et bi-vitesse : 2 x M40 + M16

³⁾ Pour passage bride FL13 : 2 x M40 + M16

⁴⁾ Pour passage bride de très grand format FL21 : 2 x M63 + M16

Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 200-225

Schémas d'encombrement

IM B35 (IM 2001), IM 2002

Hauteur	Nombre																											
d'axe	de pôles	Α	AA	AB	AC	ΑE	В	B'	ВА	BB	С	CA	CA'	CB	D	DA	DB	DC	E1)	EA	EG	EH	F	FA	G	GA	GB	GC
200		318	64	380	386	243	267	305	112	365	133	314	276	30	55	45	M20	M16	110	110	42	36	16	14	49	59	39.5	48.5
225	2	356	69	418	425	243	286	311	102	365	149	314	289	24.5	5 55	55	M20	M20	110	110	42	42	16	14	49	59	49	59
225	4-8	356	69	418	425	243	286	311	102	365	149	314	289	24.5	5 60	55	M20	M20	140	110	42	42	18	16	53	64	49	59

Hauteu	Nombre																									
d'axe	de pôles	Н	НА	HD ³⁾	HD ⁴⁾	HE ³⁾	HE ⁴⁾	K	L	LA	LB	LC	М	Ν	Р	S	Т	UB ²⁾	VA	VB	VC ³⁾	VC ⁴⁾	VD ³⁾	VD ⁴⁾	VE ³⁾	VE ⁴⁾
200		200	25	500	532	223	239	18	821	20	711	934	350	300	400	19	5	2xFL13	101	243	112	77	179	167	145	122
225	2	225	25	547	579	244	260	18	850	22	740	971	400	350	450	19	5	2xFL13	93.5	243	112	77	179	167	145	122
225	4-8	225	25	547	579	244	260	18	880	22	740	1001	400	350	450	19	5	2xFL13	93.5	243	112	77	179	167	145	122

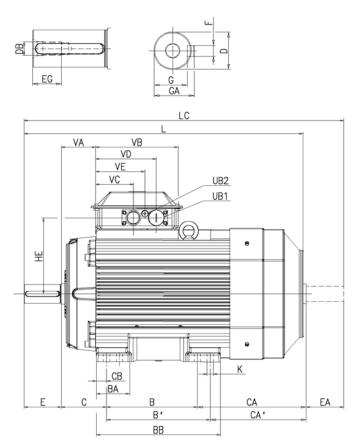
¹⁾ L'épaulement du bout d'arbre et la surface de contact de la bride sont dans le même plan.

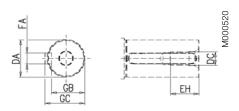
Tolérances :

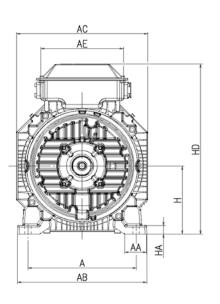
TOTOTATIOGS.	
А, В	ISO js14
C, CA	± 0,8
D 55-75	ISO m6
DA 45-55	ISO k6
F, FA	ISO h9
Н	+0 -0,5
N	ISO j6

Dimensions en mm.

²⁾ Passage bride avec bride taraudée FL 13, avec orifices d'entrée taraudés obturés Moteurs mono et bi-vitesse : 2 x M40 + M16


Moteurs pour 230 VD 50 Hz ou 225 SMC-2, 225 SMD-2, 225 SMD-4 avec bride taraudée FL21 et 2 x M63 + M16


³⁾ Pour passage bride FL13 : 2 x M40 + M16


⁴⁾ Pour passage bride de très grand fromat FL21 : 2 x M63 + M16

Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 250-280

Schémas d'encombrement

IM B3 (IM 1001), IM 1002

IIVI D3 (IIVI	1001), 1101 1	002																						
Hauteur	Nombre																							
d'axe	de pôles	Α	AA	AB	AC	AE	В	B'	ВА	BB	С	CA	CA'	CB	D	DA	DB	DC	Е	EA	EG	EH	F	FA
250	2	406	78	473	471	243	311	349	106	409	168	281	243	40	60	55	M20	M20	140	110	42	42	18	16
250	4-8	406	78	473	471	243	311	349	106	409	168	281	243	30	65	55	M20	M20	140	110	42	42	18	16
280	2	457	102.	5 522	471	243	368	419	92	489	190	202	151	37.5	65	55	M20	M20	140	110	42	42	18	16
280	4-8	457	102.	5 522	471	243	368	419	92	489	190	202	151	37.5	75	55	M20	M20	140	110	42	42	20	16

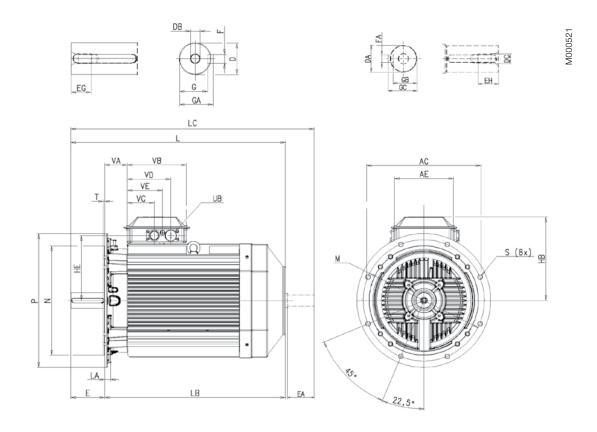
Hauteur	Nombre																						
d'axe	de pôles	G	GA	GB	GC	Н	НА	HD ²⁾	HD ³⁾	HE ²⁾	HE ³⁾	K	L	LC	UB ¹⁾	VA	VB	VC ³⁾	VC ⁴⁾	VD ³⁾	VD ⁴⁾	VE ³⁾	VE ⁴⁾
250	2	53	64	49	59	250	30	594	627	268	284	22	884	1010	2xFL13	93.5	243	112	77	179	167	145	122
250	4-8	58	69	49	59	250	30	594	627	268	284	22	884	1010	2xFL13	93.5	243	112	77	179	167	145	122
280	2	58	69	49	59	280	40	-	657	-	284	24	884	1010	2xFL21	93.5	243	-	77	-	167	-	122
280	4-8	67.5	79.5	49	59	280	40	-	657	-	284	24	884	1010	2xFL21	93.5	243	-	77	-	167	-	122

Passage bride avec bride taraudée FL 13, avec orifices d'entrée taraudés obturés Moteurs mono et bi-vitesse : 2 x M40 + M16

Moteurs pour 230 VD 50 Hz ou 250 SMC-2, 250 SMC-4 et tous les 280 avec bride taraudée FL21 et 2 x M63 + M16

Tolérances :

A, B ISO js14
C, CA ± 0,8
D 55-75 ISO m6
DA 45-55 ISO k6
F, FA ISO h9
H +0 -0,5


Dimensions en mm.

Pour passage bride FL13: 2 x M40 + M16

³⁾ Pour passage bride de très grand format FL21 : 2 x M63 + M16

Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 250-280

Schémas d'encombrement

IM B5 (IM 3001), IM 3002

Hauteur	Nombre																				
d'axe	de pôles	AC	AE	D	DA	DB	DC	E ¹⁾	EA	EG	EH	F	FA	G	GA	GB	GC	HB ³⁾	HB ⁴⁾	HE ³⁾	HE ⁴⁾
250	2	471	243	60	55	M20	M20	140	110	42	42	18	16	53	64	49	59	344	377	268	284
250	4-8	471	243	65	55	M20	M20	140	110	42	42	18	16	58	69	49	59	344	377	268	284
280	2	471	243	65	55	M20	M20	140	110	42	42	18	16	58	69	49	59	-	377	-	284
280	4-8	471	243	75	55	M20	M20	140	110	42	42	20	16	67.5	79.5	49	59	-	377	-	284

Hauteur	Nombre																		
d'axe	de pôles	L	LA	LB	LC	М	Ν	Р	S	Т	UB ²⁾	VA	VB	VC ³⁾	VC ⁴⁾	VD ³⁾	VD ⁴⁾	VE ³⁾	VE ⁴⁾
250	2	884	24	744	1010	500	450	550	19	5	2xFL13	93.5	243	112	77	179	167	145	122
250	4-8	884	24	744	1010	500	450	550	19	5	2xFL13	93.5	243	112	77	179	167	145	122
280	2	884	24	744	1010	500	450	550	19	5	2xFL21	93.5	243	-	77	-	167	-	122
280	4-8	884	24	744	1010	500	450	550	19	5	2xFL21	93.5	243	-	77	-	167	-	122

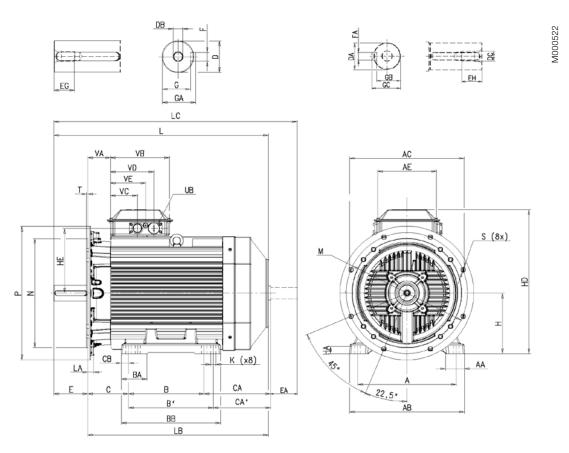
¹⁾ L'épaulement du bout d'arbre et la surface de contact de la bride sont dans le même plan.

Moteurs pour 230 VD 50 Hz ou 250 SMC-2, 250 SMC-4 et tous les 280 avec bride taraudée FL21 et 2 x M63 + M16

Tolérances:

D 55-75	ISO m6
DA 45-55	ISO k6
F, FA	ISO h9
N	ISO j6

Dimensions en mm.


²⁾ Passage bride avec bride taraudée FL 13, avec orifices d'entrée taraudés obturés Moteurs mono et bi-vitesse : 2 x M40 + M16

³⁾ Pour passage bride FL13 : 2 x M40 + M16

⁴⁾ Pour passage bride de très grand format : FL21 : 2 x M63 + M16

Moteurs Process Performance BT • gamme aluminium Hauteurs d'axe 250-280

Schémas d'encombrement

IM B35 (IM 2001), IM 2002

IIVI DOG (IIV	1 2001), 110	1 200	_																									
Hauteur	Nombre																											
d'axe	de pôles	Α	AA	AB	AC	ΑE	В	B'	ВА	BB	С	CA	CA'	CB	D	DA	DB	DC	E ¹⁾	EA	EG	EH	F	FA	G	GA	GB	GC
250	2	406	78	474	471	243	311	349	106	409	168	281	243	40	60	55	M20	M20	140	110	42	42	18	16	53	64	49	59
250	4-8	406	78	474	471	243	311	349	106	409	168	281	243	30	65	55	M20	M20	140	110	42	42	18	16	58	69	49	59
280	2	457	103	525	471	243	368	419	92	489	190	202	151	38	65	55	M20	M20	140	110	42	42	18	16	58	69	49	59
280	4-8	457	103	525	471	243	368	419	92	489	190	202	151	38	75	55	M20	M20	140	110	42	42	20	16	68	80	49	59

Hauteur	Nombre																									
d'axe	de pôles	Н	НА	HD ³⁾	HD ⁴⁾	HE ³⁾	HE4)	K	L	LA	LB	LC	М	Ν	Р	S	Т	UB ²⁾	VA	VB	VC ³⁾	VC ⁴) VD ³⁾	VD ⁴⁾	VE ³⁾	VE ⁴⁾
250	2	250	30	594	627	268	284	22	884	24	744	1010	500	450	550	19	5	2xFL13	93	243	112	77	179	167	145	122
250	4-8	250	30	594	627	268	284	22	884	24	744	1010	500	450	550	19	5	2xFL13	93	243	112	77	179	167	145	122
280	2	280	40	-	657	-	284	24	884	24	744	1010	500	450	550	19	5	2xFL21	93	243	-	77	-	167	-	122
280	4-8	280	40	-	657	-	284	24	884	24	744	1010	500	450	550	19	5	2xFL21	93	243	-	77	-	167	-	122

¹⁾ L'épaulement du bout d'arbre et la surface de contact de la bride sont dans le même plan.

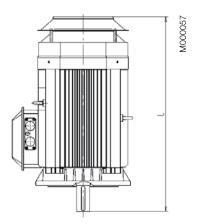
Tolérances :

A, B ISO js14
C, CA ± 0,8
D 55-75 ISO m6
DA 45-55 ISO k6
F, FA ISO h9
H +0 -0,5
N ISO js6

Dimensions en mm.

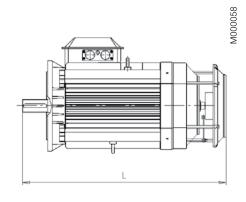
Passage bride avec bride taraudée FL 13, avec orifices d'entrée taraudés obturés Moteurs mono et bi-vitesse : 2 x M40 + M16

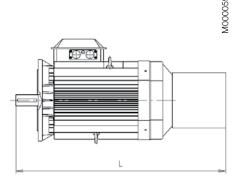
Moteurs pour 230 VD 50 Hz ou 250 SMC-2, 250 SMC-4 et tous les 280 avec bride taraudée FL21 et 2 x M63 + M16


³⁾ Pour passage bride FL13 : 2 x M40 + M16

⁴⁾ Pour passage bride de très grand format FL21 : 2 x M63 + M16

Moteurs Process Performance BT et Premium • gamme aliminium Accessoires

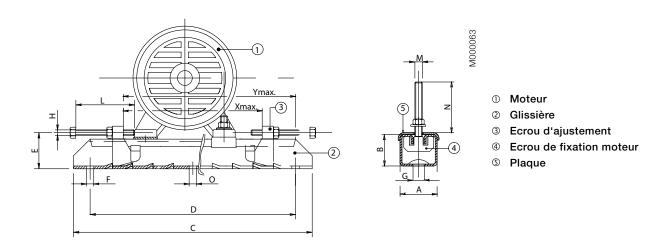

Capot de protection et entraînements à vitesse variable


Capot de protection Code option 005

Codeur Codes options 472, 473, 572 et 573

Ventilation forcée avec ou sans codeur Codes options 183, 474, 476, 477, 189, 574, 576 et 577

	Codes				474, 476
	options			472, 473	477, 574
МЗАА	005	183	189	572, 573	576, 577
Hauteur d'axe	L	L	L	L	L
63-132	1)	1)	1)	1)	1)
160 ²⁾	635	996	851	668	996
160 ³⁾	732	1093	948	765	1093
180	779	1143	998	811	1143
200	875	1274	1129	918	1274
225 4)	902	1307	1162	946	1307
225 ⁵⁾	932	1337	1192	976	1337
250	937	1351	1206	982	1351
280	937	1351	1206	982	1351


²⁾ MLA-2, MLB-2 et MLC-2 pôles ; MLA-4 pôles ; MLA-6 pôles ; MLA-8 et MLB-8 pôles

³⁾ Autres exécutions, à savoir MLD-2 et MLE-2 pôles ; MLB-4, MLC-4 et MLD-4 pôles ; MLC-8 pôles

^{4) 2} pôles

^{5) 4-8} pôles

Glissières pour moteurs de hauteurs d'axe 160 à 280

Hauteur d'axe	Туре	Code produit 3GZV103001-	Α	В	С	D	E	F	G	Н	L	М	N	0	Xmaxi	Ymaxi	masse kg
160-180	TT180/12	-14	75	42	700	630	57	17	26	M12	120	M12	50	-	520	580	12.0
200-225	TT225/16	-15	82	50	864	800	68	17	27	M16	140	M16	65	17	670	740	20.4
250-280	TT280/20	-16	116	70	1072	1000	90	20	27	M18	150	M20	80	20	870	940	43.0

¹⁾ Hauteurs d'axe inférieures sur demande

Chaque jeu contient 2 glissières coulissantes complètes avec vis pour le montage du moteur. Les vis de montage des glissières sur la base ne sont pas incluses. Les glissières coulissantes sont fournies avec des surfaces inférieures non usinées. Elles doivent donc être soutenues de manière adéquate avant serrage.

Moteurs Process Performance BT • gamme aluminium Tableau récapitulatif

Hauteur d'axe		63	71	80	90	100	112	132		
Carcasse et	Matière	Alliage d'alum	inium coulé sou	s pression	•	·				
pattes	Couleur	Munsell bleue 8B 4.5/3.25 / NCS 4822 B05G								
	Traitement de surface	Peinture poud	Peinture poudre polyester ≥ 30 μm							
Pattes		Pattes amovib	Pattes amovibles							
	Matière	Alliage d'alum	inium, intégrées	au stator		*				
Flasques	Matière	Alliage d'alum	inium coulé sou	s pression						
paliers	Couleur	Munsell bleue	8B 4.5/3.25 / N	ICS 4822 B05G	•	••••				
	Traitement de surface	Peinture poud	re polyester ≥ 3	0 μm						
Roulements	C.C.	6202-2Z/C3	6203-2Z/C3	6204-2Z/C3	6205-2Z/C3	6306-2Z/C3	6306-2Z/C3	6208-2Z/C3 ¹⁾		
								6308-2Z/C3 ²⁾		
	C.O.C.	6201-2Z/C3	6202-2C/C3	6203-2Z/C3	i	6205-2Z/C3	6205-2Z/C3	6206-2Z/C3		
				1) Tous les typ	es sauf 2). 2) SM	_				
Point fixe	Couvercle de roulements	Anneau de blo	cage interne		C.C.					
Joints	C.C.	Joint V-ring		!	!					
d'étanchéité	C.O.C.	Joint labyrinth	e			•				
Lubrification		Roulements p	rotégés graissés	s à vie						
		Plage de temp	Plage de température de la graisse -40 °C à +160 °C							
Boîte à bornes	Matière	Alliage d'alum	inium coulé sou	s pression, base	intégrée au sta	itor				
	Traitement de surface	Idem stator								
	Visserie	Acier 5G galvanisée								
Raccordements	Ouvertures prédéfonçables	1xM16xPg11 2x(M20 + M20) 2x(M20+M25) 2x(M20+M25) 1) 2x(M40+M32+M12)								
		1) types S, SB, M, MA. 2) types SC, MC, SMA, SMB, SMC, SMD, SME								
	Section maxi Cu, mm²	2,5	4		6			10 ¹⁾ 32 ²⁾		
	Boîte à bornes	Cosses de cât	ole, 6 bornes		Bornes à vis,	6 bornes		Cosses de câble, 6 bornes		
Ventilateur	Matière	Polypropylène	. 20 % armé fib	ore de verre						
Capot du ventilateur	Matière	Polypropylène								
Bobinage stator	Matière	Cuivre								
	Isolation	Isolation class	e F							
Rotor	Matière	Aluminium cou	ulé sous pressio	n						
Equilibrage		Demi-clavette	Demi-clavette							
Clavettes		Rainure de cla	vette fermée							
Résistances de réchauffage	Sur demande	8 W		25 W						
Degré de protection		IP 55								
		IC 411								
Mode de refroidissement		IC 411								

Moteurs Process Performance BT • gamme aluminium Tableau récapitulatif

Hauteur d'axe		160	180	200	225	250	280
Carcasse	Matière		Alliage d'aluminium extrudé coulé sous pression				
	Couleur	Munsell bleue 8E	3 4.5/3.25 / NCS 48	: 822 B05G			
	Traitement de surface	Peinture poudre polyester ≥ 100 μm					
Pattes	Matière	Alliage d'aluminiu boulonnées au s		Fonte, boulonne	ées au stator		
Flasques paliers	Matière	Fonte EN-GJL-2	00/GG 20/GRS 200)			
	Couleur	Munsell bleue 8E	3 4.5/3.25 / NCS 4	822 B05G			
	Traitement de surface	Peinture époxy b ≥ 100 µm	i-composant	Peinture époxy	bi-composant ≥	100 μm	
Roulements	C.C.	6309-2Z/C3	6310-2Z/C3	6312-2Z/C3	6313-2Z/C3	6315-2Z/C3	6316/C3 ¹⁾
	C.O.C.	6209-2Z/C3	6209-2Z/C3	6210-2Z/C3	6212-2Z/C3	6213-2Z/C3	6213/C3
		1) 6315/C3 pour	moteurs 2 pôles	•	•	•	•
Point fixe	Couvercle de roulements	En standard, poi	nt fixe côté comma	inde (C.C.)			
Joints d'étanchéité		Joint axial en sta	ndard				
Lubrification		Roulements protégés graissés à vie Graisse pour large plage de températures				Relubrification Plage de temp. de la graisse -40 à 150 °C	
Boîte à bornes	Matière	Alliage d'aluminium coulé sous Tôle d'acier emboutie, boulonnée au stator pression, base intégrée au stator					
	Traitement de surface	Idem stator		Phosphatation	; peinture polyes	ter	
	Visserie	Acier 8.8, revêtement zinc et chromé					
Raccordements	Ouvertures prédéfonçables Passages brides pour codes de tension	(2 x M40 + M16) + (2 x M40)		2 x FL13, 2 x M40 + 1 x M16 Code de tension S; 2 x FL21, 2 x M63 + 1 x M16			2 x FL21 2 x M63 1 x M16
	Visserie	M6		M10	•		······
	Section maxi Cu, mm ²	35	······	70			
Ventilateur	Matière	Polypropylène. 2	0 % armé fibre de	verre			
Capot du ventilateur	Matière	Acier galvanisé à	chaud				
	Couleur		B 4.5/3.25 / NCS 4		•	•	
	Traitement de surface	Ī	polyester ≥ 100 μm				
Bobinage stator	Matière	Cuivre					
	Isolation	Isolation classe F					
	Protection	3 sondes PTC en standard, 150 °C					
Rotor	Matière	Aluminium coulé sous pression					
Equilibrage		Demi-clavette					
Clavettes		Rainure de clave	tte fermée				
Résistances de réchauffage	En option	25 W	50 W				
Degré de protection		IP 55					
Mode de refroidissement		IC 411					

Informations utiles

Panorama des tensions et fréquences réseau utilisées dans le monde

Pays	Fréquence Hz	Tensions industrielles les plus courantes (V)
EUROPE	- <u>-</u>	
Allemagne	50	690, 400/230
andorre	50	400/230, 380/220
Autriche	50	690, 400/230
Belgique	50	400/230
Biélorussie	50	380/220
Bosnie-Herzégovine	50	380/220
Julgarie	50	380/220
Chypre	50	415/240, 400/230
Proatie	50	400/230, 380/220
anemark	50	400/230
spagne *	50	400/230, 380/220
stonie *	50	380/220
inlande *	50	690, 500, 400/230
rance	50	400/230, 380/220
irèce	50	400/230, 380/220
ongrie	50	400/230, 380/220
lande	50	400/230, 380/220
slande	50	400/230, 380/220
alie *	50	400/230, 380/220
ettonie	50	380/220
iechtenstein	50	400/230
ituanie	50	380/220
uxembourg	50	400/230, 380/220
lacédoine	50	220
lalte	50	415/240
Ionaco	50	400/230, 380/220
Ionténégro	50	400-690
orvège	50	690, 500, 400/230
ays-Bas	50	500, 400/230
ologne	50	400/230, 380/220
ortugal	50	400/230, 380/220
République tchèque	50	690, 400/230, 380/220
oumanie	50	400/230, 380/220
loyaume-Uni	50	690, 415/240, 400/230, 380/220
lussie *	50	380/220
erbie	50	380
lovaquie	50	400/230, 380/220
lovénie	50	400/230, 380/220
uède *	50	690, 500, 400/230
Guisse	50	690, 500, 400/230
urquie	50	230/400
Ikraine	50	380/220

^{*} Sites de production

Panorama des tensions et fréquences réseau utilisées dans le monde

Pays	Fréquence Hz	Tensions industrielles les plus courantes (V)
AFRIQUE	•	, , ,
Afrique du Sud *	50	500, 400/230, 380/220
Algérie	50	415/230, 380/220
Angola	50	380/220
Botswana	50	400/230
Burkina Faso	50	380/220
Burundi	50	380/220
Sameroun	50	380/220
Congo	50	380/220
ôte d'Ivoire	50	380/220
gypte	50	380/220
ithiopie	50	380/220
ambie	50	400/230
ihana	50	415/240, 400/230
uinée	50	440/220, 380/220
iuinee iuinée-Bissau	50	220/110
	50	415/240, 380/220
enya	50	380/220
esotho		
ybie	50	400/230
/alawi	50	400/230, 380/220
laroc	50	400/230, 380/220
lozambique	50	380/220
amibie	50	220
ligéria	50	415/240, 380/220
uganda	50	415/240
épublique démocratique du Congo	50	380/220
épublique centrafricaine	50	380/220
wanda	50	400/230
énégal	50	400/230
ierra Leone	50	400/230
oudan	50	400/230
anzanie	50	400/230
chad	50	380/220
unisie	50	400/230
aïre	50	415, 380/220
ambie	50	400/230
imbabwe	50	400/230
MOYEN ORIENT		
Arabie Saoudite	50, 60	440/220, 400/230, 380/220
ahreïn	50	400/230, 380/220
mirats Arabes Unis	50	415/220
ak	50	400/230
sraël	50	415, 400/230, 280/220
ordanie	50	400/230, 380/220
oweït	50	415/240
iban	50	380/220
)man	50	415/240
Patar	50	415/240
Syrie	50	380/220

^{*} Sites de production

Panorama des tensions et fréquences réseau utilisées dans le monde

Pays	Fréquence Hz	Tensions industrielles les plus courantes (V)
ASIE		()
Afghanistan	50	380/220
Arménie	50	380/220
zerbaïdjan	50	380/220
Bangladesh	50	380/220
Shoutan	50	400/230
ambodge	50	380/220
chine *	50	380/220
orée du Nord	60	380/220
orée du Sud	60	440, 380/220
ong Kong	50	380/220
ide *		
	50	415/240, 400/230
donésie	50	380/220
an	50	400/230, 380/220
apon	50, 60	440/220, 400/200
azakhstan	50	380/220
aos	50	380/220
alaisie	50	415/240
yanmar (Birmanie)	50	400/230
• • •		
épal 	50	400/230
akistan	50	415/240, 400/230
hilippines	60	440, 220/110
ingapour	50	415/240
ri Lanka	50	400/230, 380/220
aïwan	60	440, 380/220
haïlande	50	380/220
iêtnam	50	380/220
		000/220
CEANIE		
ustralie	50	415/240
idji	50	415/240
ouvelle-Zélande	50	415/240, 400/230
MERIQUE DU NORD		
anada	60	600, 575, 460/230
tats-Unis	60	460/230
MERIQUE CENTRALE ET DU SUD		
ntigua	60	480, 460, 440, 230, 230/460, 220
rgentine	50	660, 380, 220
ruba	60	480, 460, 440, 230, 230/460, 220
ahamas	60	480, 460, 440, 230, 230/460, 220
elize	60	480, 440, 240, 220
ermudes	60	480, 460, 440, 230, 230/460, 220
olivie	50	480, 440, 220/380
résil	60	690, 480, 460, 440, 380/660, 220/380/440, 280/380
hili	50	690, 575, 460, 380/660, 380/220
olombie	60	230/480, 230/460, 220/440, 110/220
osta Rica	60	480, 440, 240, 220
uba	60	480, 460, 440, 230, 230/460, 220
l Salvador	60	480, 440, 240, 220
quateur	60	660, 480, 460, 220/440
uatemala	60	480, 440, 240, 220
uyane	60	480, 460, 440, 230, 230/460, 220
aïti	60	480, 460, 440, 230, 230/460, 220
onduras	60	480, 440, 240, 220
amaïque	60	480, 460, 440, 230, 230/460, 220
a Barbade	50	480, 460, 440, 230, 230/460, 220
lexique 	60	440/220
icaragua	60	480, 440, 240, 220
	60	480, 440, 240, 220
anama		
	50	660, 380, 220
araguay		660, 380, 220 690, 480, 460, 440, 380, 220, 220/440
ranama Paraguay Pérou Iruguay	50	

Informations techniques Définitions, grandeurs, unités et formules

Degrés de protection

Tel que défini par les normes IEC 34-5 et BS4999 pt 105, le degré de protection est généralement constitué des deux lettres IP suivies de deux chiffres. Le premier chiffre désigne la protection contre les corps solides ou la protection des personnes contre les contacts accidentels avec des organes sous tension ou des pièces en mouvement. Le second désigne la protection contre les effets de la pénétration d'eau...

1er chiffre	Protection	2ème chiffre	Protection
0	Aucune	0	Aucune
1	Contre les corps solides > 50 mm	1	Contre les chutes verticales de gouttes d'eau
2	Contre les corps solides > 12 mm	2	Contre les chutes de gouttes d'eau jusqu'à 15° de la verticale
3	Contre les corps solides > 2,5 mm	3	Contre l'eau en pluie jusqu'à 60° de la verticale
4	Contre les corps solides > 1 mm	4	Contre les projections d'eau de toutes directions
5	Contre les poussières	5	Contre les jets d'eau de toutes directions à la lance
6	Totale contre les poussières	6	Contre les projections d'eau assimilables aux paquets de mer (pas de protection contre la corrosion)
		7	Contre les effets de l'immersion

Modes de refroidissement

Tel que défini par les normes IEC 34-6 et BS4999 pt 106, le mode de refroidissement est généralement désigné par les deux lettres IC suivies de deux chiffres. Le premier chiffre indique la disposition du circuit de refroidissement et le second la manière dont est fournie l'énergie nécessaire à la circulation du fluide de refroidissement. Lorsque plusieurs circuits de refroidissement sont utilisés, les lettres caractéristiques IC seront suivies de groupes de deux lettres (IC0141, par exemple).

Les modes de refroidissement suivants sont utilisés dans ce catalogue:

- IC410 : Exemple type, moteurs pour tables à rouleaux
- IC411: Moteurs standards
- IC416: Moteurs standards (normalement hauteurs d'axe supérieures équipées d'un ventilateur auxiliaire)
- IC418: Moteurs pour application de ventilation (refroidi par le courant d'air produit)
- IC01 : Moteurs ouverts autoventilés
- IC31W: Moteurs refroidis par eau

Formes de montage

Les formes de montage sont définies par les normes IEC 34-7, BS4999 pt. 107 code II et DIN42950. Les formes suivantes sont utilisées dans ce catalogue et s'appliquent aux moteurs avec deux roulements logés dans des paliers.

Pour les moteurs à bride, accès par l'arrière de la bride.

- IM1001 (B3): Moteur à pattes, arbre horizontal
- IM1011 (V5): Moteur à pattes, arbre vertical
- IM3001 (B5): Moteur à bride, arbre horizontal
- IM30011 (V1): Moteur à bride, arbre vertical
- IM2001 (B35): Moteur à pattes et à bride, arbre horizontal
- IM1071 (B8): Moteur à pattes, arbre horizontal, pattes en haut

NOTA: utilisation d'un réducteur, services types

Les moteurs à réducteur de ce catalogue sont dimensionnés pour entraîner des machines à charge constante en service continu ou pour fonctionner avec des surcharges modérées occasionnelles. Pour les applications à service temporaire, forte inertie ou surcharges importantes, nous vous invitons à nous consulter pour définir le service type correct et sélectionner le réducteur le mieux adapté.

Abréviations

- Grandeurs électriques
- Puissance = kW
- Tension = V
- Tension d'induit = Va
- Tension d'excitation = Vf
- Intensité du courant = A
- Courant d'induit = la
- Courant d'excitation = If
- Facteur de puissance = FP

Conversion d'unités

- -1 hp = 746 W
- -1 Nm = 8.851 lb.in
- -1 mm = 0.03937 inch
- $-1 m^2 = 10.765 ft^2$
- $-1 \text{ kg.m}^2 = 1 \text{ Nms}^2 = 0.73752 \text{ lb.ft}^2$

Formules

- 1 Watt = 1 Nm/s
- Couple (lb ft) = 5250 x hp/vitesse (tr/min)
- Couple (Nm) = 9550 x kW/vitesse (tr/min)
- Puissance CA triphasée (kW) = 1,732 x V x I x FP/1000
- Puissance CA monophasée (kW) = V x I x FP/1000

Informations techniques Définitions, grandeurs, unités et formules

Formules pour les servomoteurs

Le dimensionnement correct d'un servomoteur et d'une application d'entraînement implique souvent des calculs mécaniques. Nous donnons ci-après quelques formules fréquemment rencontrées. Elles sont uniquement données à titre indicatif car les résultats devront peut-être être modifiés pour tenir compte des spécificités de l'application comme les pertes mécaniques, les angles d'inclinaison, les services types, etc.

Temps d'accélération d'une masse en rotation

- M(acc) = couple d'accélération, Nm
- J(tot) = inertie totale, kgm²
- J(mot) = inertie du moteur, kgm²
- J(charge) = inertie de la charge, kgm²
- Z = rapport de réduction (vitesse)
- t(acc) = temps d'accélération, s
- $-\alpha$ = accélération angulaire, rad/s-2
- $-\alpha$ = vitesse angulaire, rad/s-1
- n = vitesse angulaire, tr/min
- $M(acc) = J(tot) \times \alpha \text{ ou } \alpha = M(acc)/J(tot)$
- $-\alpha = \omega/t(acc)$ ou $t(acc) = \omega/\alpha$
- $-\omega = (n/60) \times 2\pi$
- $J(tot) = J(mot) + (J(charge)/Z^2)$

Exemple

- J(charge) = 0,05 kgm²
- J(mot) = 5.0 kgcm² (= 0.00050 kgm²)
- -Z = 30:1
- n = 1500 tr/min
- M(acc) = 15 Nm
- J(tot) = 0,00050 + (0,5/30²)
- $J(tot) = 0,00106 \text{ kgm}^2$
- $-\alpha = M(acc)/J(tot)$
- $-\alpha = 15/0,00106$
- $-\alpha = 14.150 \text{ rad/s}^2$
- $-\omega = (1500/60) \times 2p$
- $\omega = 157 \text{ rad/s-1}$
- $t(acc) = \omega/\alpha$
- t(acc) = 157/14.150
- t(acc) = 0.0111 s (11.1 mS)

Formules de calcul d'inertie

Les servo-entraînements sont souvent utilisés dans des applications fortement dynamiques nécessitant un positionnement rapide et précis. Pour obtenir les meilleures performances d'un système, l'inertie réelle de la charge (qui tient compte des rapports de réduction ou de multiplication) doit être égale à l'inertie du moteur. Cela est rarement possible, mais des différences de rapport types de 5:1 ne sont pas normalement significatives. Plus cette différence est importante entre l'inertie réelle de la charge et l'inertie du moteur, plus médiocres seront les performances dynamiques du système.

Rotation d'un cylindre plein autour de l'axe XX

 $- J = (mR^2)/2$

Rotation d'un cylindre creux autour de l'axe XX

 $- J = m(R^2 + r^2)/2$

Inertie équivalente de la masse coulissante sur une vis à billes

 $- J = m(s/2\pi)^2$

Effet du rapport de réduction sur l'inertie réelle

- J = J(charge) Z^2

Couple requis pour produire une force sur une tige filetée

- -M = couple requis, Nm
- F = force linéaire, N
- Z = rapport de réduction (de vitesse)
- (Z = 1 pour entraînement direct)
- s = pas de la vis à billes, m
- $-\eta = rendement$
- $-M = Fs/2\pi R\eta$

Exemple

- F = 10.000 N
- s = 10 mm (0.01 m)
- -Z = 2:1
- H = 0.9

Couple moteur requis M = $(10.000 \times 0.01)/(2\pi \times 2 \times 0.9)$ = 8.85 Nm

N.B.: La force requise est souvent exprimée en kg ou kgf. Cela suppose la force exercée sur la masse par la pesanteur (g) et doit être multipliée par 9,81 pour obtenir la force en N (newton).

Exemple: la « force » A de 100 kg est 981 N

Panorama de l'offre moteurs ABB

L'offre ABB couvre plusieurs gammes complètes de moteurs à courant alternatif et d'alternateurs. Nous fabriquons des moteurs synchrones pour les applications les plus exigeantes, de même qu'une gamme complète de moteurs asynchrones basse tension (BT) et haute tension (HT). Notre connaissance très fine de la quasi totalité des procédés et secteurs industriels est la garantie d'une solution en adéquation avec les besoins de chacun de nos clients.

Moteurs et alternateurs Basse Tension

Moteurs Process Performance

- Gamme Premium
- Gamme Fonte
- Gamme Aluminium
- Moteurs freins

Moteurs Sécurité

- Gamme antidéflagrante
- Gamme sécurité augmentée
- Gamme anti-étincelles
- Gamme atmosphères poussières explosives

Moteurs spécifiques

- Moteurs monophasés
- Moteurs haute température
- Moteurs à aimants permanents
- Moteurs haute vitesse
- Aérogénérateurs
- Moteurs désenfumage
- Moteurs refroidis à l'eau
- Moteurs de tables à rouleaux
- Servomoteurs

Moteurs Marine

- Gamme Fonte
- Gamme Acier
- Gamme Aluminium

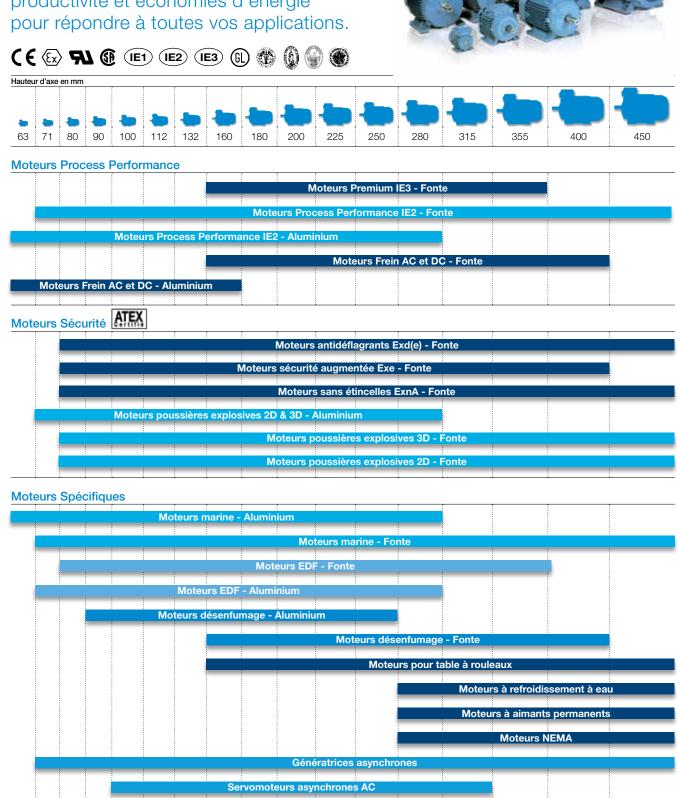
Moteurs Général Performance

- Gamme Fonte
- Gamme Acier
- Gamme Aluminium

Moteurs Marine

- Gamme Fonte
- Gamme Acier
- Gamme Aluminium

Moteurs et générateurs HT et synchrones


- Moteurs fonte HT
- Moteurs asynchrones modulaires
- Moteurs à bagues
- Moteurs pour atmosphères explosives
- Moteurs et générateurs synchrones
- Moteurs et générateurs courant continu
- Aérogénérateurs
- Moteurs de traction

Structure de l'offre

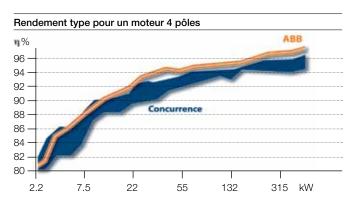
Offre moteurs basse tension

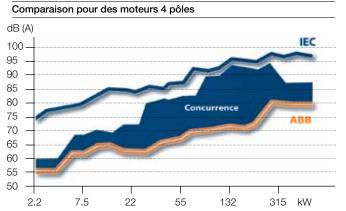
La gamme la plus complète du marché. Une offre de moteurs performants alliant productivité et économies d'énergie pour répondre à toutes vos applications.

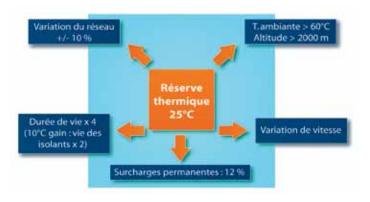
Certifications

Un bilan positif pour l'utilisateur

Avec un rendement au plus haut niveau

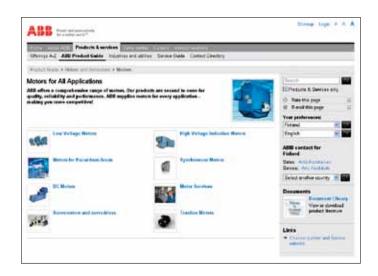

La quantité d'énergie consommée par un moteur électrique au cours de sa durée de vie multiplie par cent son coût d'achat, c'est à dire que pour un euro que vous investissez dans un moteur neuf, vous dépenserez ensuite 100 euros à le faire fonctionner. Les factures d'électricité représenteront le gros de vos dépenses mais vous serez surpris de constater l'importance de la fiabilité des moteurs ABB car la réduction des coûts indirects liés aux arrêts de production et la manutention est payante à court et long terme.


Avec un niveau de bruit réduit


Les moteurs ABB sont concus en étroite collaboration avec les leaders mondiaux de roulement, nous avons développé et mis en œuvre une pivoterie innovante avec des systèmes de lubrification permettant ainsi réduire au maximum les frottements mécaniques. Une minutieuse optimisation des ventilateurs réduit les décibels de nos moteurs tout en conservant une qualité égale de refroidissement. Une meilleure forme d'encoche réduit largement les bruits magnétiques en dessous des limites admises par la norme IEC.

Avec une réserve thermique de 25 °C

Le cycle de vie d'un moteur est lié principalement à la qualité des composants utilisés mais aussi à sa conception électrique. L'utilisation de la classe d'isolation F avec un échauffement B confère aux moteurs ABB une réserve thermique de 25 °C, ce qui permet d'augmenter le niveau de charge jusqu'à 12% sur des périodes limitées. On peut ainsi, dans certaines applications, exploiter les moteurs à des températures ambiantes ou des altitudes supérieures, ou avec des tolérances supérieures de tension et de fréquences, ou encore de prolonger la durée de vie de l'isolant. Ainsi, une réduction de 10 K de la température doublera la durée de vie du moteur.


Ce n'est pas le prix d'achat qui compte. Pour l'utilisation d'un moteur, 99% du coût global est dû à sa consommation. 99% = consommation Avec son rendement supérieur, un moteur ABB est globalement plus économique.

Les moteurs de l'offre Process sont conçus pour répondre aux exigences toujours plus sévères en terme de rendement et de fiabilité de secteurs aussi divers que les industries du papier, de l'acier, de la chimie, le BTP. Les moteurs fonctionnent au maximum de leurs performances avec un variateur de fréquence ou non pendant de longues années avec un minimum de maintenance dans des

environnements industriels des plus difficiles. Cette gamme dispose d'un grand nombre d'options telles que toutes les classes d'équilibrage, des graisseurs, de nombreux indices de protection (IPW55, IP56, IP65...), isolation classe H, plusieurs types de sondes thermiques (CTP, PTO, PTF...), résistances de réchauffage...

Retrouvez une information complète sur notre site Web www.abb.com/motors&generators

Moteurs & Générateurs > Moteurs Moteurs basse tension >>> Process performance motors >>>> Cast iron motors >>>> Premium efficiency motors Industrial performance motors General performance motors Motors for hazardous areas Marine motors Motors for additional applications

1TXH 000 109 C0302 - Imprimé en France (Nb 01.2012 Imprimeur)

Contactez-nous

ABB France

Division Discrete Automation & Motion Activité Moteurs, Machines & Drives

465, av. des Pré Seigneurs - La Boisse F-01124 Montluel cedex / France

Tél.: +33 (0)4 37 40 40 00 Fax: +33 (0)4 37 40 40 72

www.abb.com/motors&generators

Dans un souci permanent d'amélioration, ABB se réserve le droit de modifier sans préavis les caractéristiques des appareils décrits dans ce document. Les informations n'ont pas de caractère contractuel. Pour précision, veuillez prendre contact avec votre société ABB.